Skip to main content

Community Repository Search Results

resource research Media and Technology
Children’s worlds are increasingly populated by intelligent technologies. This has raised a number of questions about the ways in which technology can change children’s ideas about important concepts, like what it means to be alive or smart. In this study, we examined the impact of experience with intelligent technologies on children’s ideas about robot intelligence. A total of 60 children aged 4 through 7 were asked to identify the intellectual, psychological, and biological characteristics of 8 entities that differed in terms of their life status and intellectual capabilities. Results
DATE:
TEAM MEMBERS: Debra Bernstein
resource research Media and Technology
Research on human–robot interaction has often ignored the human cognitive changes that might occur when humans and robots work together to solve problems. Facilitating human–robot collaboration will require understanding how the collaboration functions system-wide. The authors present detailed examples drawn from a study of children and an autonomous rover, and examine how children’s beliefs can guide the way they interact with and learn about the robot. The data suggest that better collaboration might require that robots be designed to maximize their relationship potential with specific users
DATE:
TEAM MEMBERS: Debra Bernstein Kevin Crowley Illah Nourbakhsh
resource project Public Programs
The New York Hall of Science (NYSCI), in collaboration with O\'Reilly Media will host a two-day workshop to explore the potential for the kinds of making, designing, and engineering practices celebrated at Maker Faire to enrich science and math learning. The purpose of this workshop is to identify and aggregate successful programming strategies that increase student engagement and proficiency in STEM, with a focus on students underrepresented in STEM careers. The meeting will be organized around three main ideas: catalyzing a national Maker movement; dissemination and scaling of design principles; and assessment of impacts on STEM learning and attitudes. The convening highlights the capacity of making activities to impact student motivation, attitudes, and conceptual understanding in STEM in both informal and formal learning environments. The workshop will be held in conjunction with the World Maker Faire at NYSCI on September 18-19, 2011. The World Maker Faire is a two-day, family-friendly event that celebrates the Do-it-Yourself or DIY movement and brings together a broad community of professionals and laypersons with a common interest in technology-based creativity, tinkering, and the reuse of materials and technology. The proposed workshop extends the work of the previous Maker Faire workshop (DRL 10-46459) by identifying initiatives that bridge the Maker and STEM communities while building students' foundational STEM knowledge and engaging audiences underrepresented in STEM careers. This workshop will accommodate approximately 50 local and national scientists, engineers, learning science researchers, educators, policymakers, and philanthropists. Select participants will present detailed case studies of maker programs, design principles, assessments, and measured outcomes in STEM attitudes and learning. Key elements of successful programs and assessment strategies will be identified across the case studies in brainstorming sessions and roundtable discussions. Following the workshop, a subset of the case studies will be compiled into an edited volume, indexed by the dimensions of student learning in the National Research Council publication, "A Framework for K-12 STEM Education: Practices, Crosscutting Concepts and Core Ideas." This project uses the momentum of the popular Maker Faire movement, based in design, engineering and technology concepts, to connect to STEM education while capitalizing on the strengths of informal learning environments. The workshop provides researchers, practitioners, and policymakers with an aggregated collection of program design principles and reliable metrics for documenting changes in preK-20 STEM attitudes and learning. The edited volume has the potential to advance the understanding of how to bridge formal and informal learning environments, while also fostering research on the affective dimensions of making in diverse audiences.
DATE: -
TEAM MEMBERS: David Kanter
resource project Public Programs
Michigan Technological University will collaborate with David Heil and Associates to implement the Family Engineering Program, working in conjunction with student chapters of engineering societies such as the American Society for Engineering Education (ASEE), the Society of Hispanic Professionals (SHP) and a host of youth and community organizations. The Family Engineering Program is designed to increase technological literacy by introducing children ages 5-12 and their parents/caregivers to the field of engineering using the principles of design. The project will reach socio-economically diverse audiences in the upper peninsula of Michigan including Native American, Hispanic, Asian, and African American families. The secondary audience includes university STEM majors, informal science educators, and STEM professionals that are trained to deliver the program to families. A well-researched five step engineering design process utilized in the school-based Engineering is Elementary curriculum will be incorporated into mini design challenges and activities based in a variety of fields such as agricultural, chemical, environmental, and biomedical engineering. Deliverables include the Family Engineering event model, Family Engineering Activity Guide, Family Engineering Nights, project website, and facilitator training workshops. The activity guide will be pilot tested, field tested, and disseminated for use in urban, suburban, and rural settings. Strategic impact will result from the development of content-rich engineering activities for families and the dissemination of a project model that incorporates the expertise of engineering and educational professionals at multiple levels of implementation. It is anticipated that 300 facilitators and 7,000-10,000 parents and children will be directly impacted by this effort, while facilitator training may result in more than 27,000 program participants.
DATE: -
TEAM MEMBERS: Neil Hutzler Eric Iversen Christine Cunningham Joan Chadde David Heil
resource project Public Programs
Our Center works with students from kindergarten through graduate school and beyond. We work with teachers and scientists and combine our knowledge to inspire students to pursue careers in neural engineering and neuroscience. Program activities include summer research programs, curriculum development, school visits, teacher/student workshops, science festivals, and international student exchanges.
DATE: -
TEAM MEMBERS: University of Washington Eric Chudler