Skip to main content

Community Repository Search Results

resource research Public Programs
In this article I critically examine the historical context of science education in a natural history museum and its relevance to using museum resources to teach science today. I begin with a discussion of the historical display of race and its relevance to my practice of using the Museum’s resources to teach science. I continue with a critical review of the history of the education department in a natural history museum to demonstrate the historical constitution of current practices of the education department. Using sociocultural constructs around identity formation and transformation, I
DATE:
TEAM MEMBERS: Jennifer Adams
resource project Public Programs
This research oriented project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. It represents a partnership among The City College of New York (CCNY), the New York Hall of Science (NYHOS), and the City University of New York Center for Advanced Study in Education (CUNY-CASE). It integrates the Science Career Ladder, a sustained program of informal science teaching training and employment at the NYHOS, with the CCNY science teacher preparation program. The longitudinal and comparative research study being conducted is designed to examine and document the effect of this integrated program on the production of urban science teachers. Outcomes from this study include a new body of research related to the impact of internships in science centers on improving classroom science teaching in urban high schools. Results are being disseminated to both the informal science education community (through the Association for Science and Technology Centers and the Center for Informal Learning in Schools, an NSF supported Center for Learning and Teaching situated at the San Francisco Exploratorium) and the formal education community (through the National Science Teachers Association and the American Educational Research Association).

The Science Career Ladder program engages undergraduates as inquiry-based interpreters (Explainers) for visitors to the NY Hall of Science. Integrating this experience with a formal teacher certification program enables participants to coordinate experiences in the science center, college science and education classes, and K-12 classrooms. Participants receive a license to teach science upon graduating. The approach has its theoretical underpinnings in the concept of situated learning as noted by Kirshner and Whitson (1997, Situated Cognition: Social, Semiotic and Psychological Perspectives, Mahwah, NJ: Erlbaum). Through apprenticeship experiences, situated learning recreates the complexity and ambiguity of situations that learners will face in the real world. Science centers provide a potentially ideal setting for situational learning by future teachers, allowing them to develop, exercise and refine their science teaching and learning skills as noted by Gardner (1991, The Unschooled Mind, New York: Basic Books).

There is a well-documented shortage of science teachers in urban school districts. The causes of this shortage relate to all phases of the teacher professional continuum, from recruitment through training and retention. At the same time, the demographic composition of American teachers is increasingly out of synch with the demographics of the student population, raising concerns that a critical shortage of role models may be at hand, contributing to a worsening situation in urban schools. In the face of these challenges many innovative teacher recruitment and teacher preparation programs have been developed to augment traditional pathways to teaching. These programs range from high school academies for students expressing an interest in teaching to the recruitment and training of individuals making mid-life career changes. The CLUSTER program described above represents a new alternative. There are more than 250 science centers in the United States. Many of these have extensive youth internship programs and collaborative relationships with local colleges. Therefore, the proposed model is widely applicable.
DATE: -
resource research Public Programs
The article assesses professional development in the field of science through curricular and instructive methods in the museum. The National Science Education Standards, along with independent researchers, confirm and stress the importance of quality professional development for elementary science educators which can be provided by museum services and models. The study involved participants from two different elementary schools within the same urban district serving a Latino student body, which were recognized as bottom tiers in the academic performance index of California's Department of
DATE:
TEAM MEMBERS: Leah Melber
resource evaluation Public Programs
In 2001, The Franklin Institute Science Museum (TFI) received funding from the National Science Foundation to develop and implement Parent Partners in School Science (PPSS). A year project, PPSS was designed to demonstrate how a science museum can facilitate K-4 children's science learning in and out of school, working with teachers and parents from 3 urban elementary schools in Philadelphia. More specifically, three goals have informed the implementation of PPSS: 1) Promote science teaching at the elementary level; 2) Cultivate home-school collaboration in support of students' science
DATE:
TEAM MEMBERS: Jessica Luke Franklin Institute Science Museum Martha Washington Academics Plus Olney Elementary School R.B. Pollock Elementary School Susan Foutz
resource project Public Programs
This five-year project is designed to provide urban youth in grades 4-8 with innovative, hands-on science experiences in an after-school environment that will enhance their science competencies, while increasing the capacity of after-school leaders. In Years 1-3, nine science modules will be developed, field-tested and evaluated in collaboration with 12 after-school programs in Boston, Massachusetts, serving diverse populations of low-income youth. Each module includes a full color activity book, comprehensive facilitation guide and guidelines that enable students to share results of their investigations on the project website. Topics to be addressed include electricity, planets, invention and habitats. A comprehensive training program will include training for coaches who will provide assistance with the implementation of science modules and offer ongoing professional development for after-school providers. In Years 4-5, the project will be disseminated to after-school programs in Los Angeles, CA, Columbus, OH, and Philadelphia, PA. Additionally, the PI will partner with the National Institute on Out of School Time (NIOST) to disseminate the project nationally using the Cross-Cities Network. All materials will be printed in both English and Spanish, while the website will offer the option of downloading materials in a variety of other languages. It is anticipated this project will serve more than 3,000 youth and 400 after-school providers.
DATE: -
TEAM MEMBERS: John Zuman
resource project Public Programs
Having developed the concept of near-peer mentorship at the middle school/high school level and utilized it in a summer science education enhancement program now called Gains in the Education of Mathematics and Science or GEMS at the Walter Reed Army Institute of Research (WRAIR), it is now our goal to ultimately expand this program into an extensive, research institute-based source of young, specially selected, near-peer mentors armed with kits, tools, teacher-student developed curricula, enthusiasm, time and talent for science teaching in the urban District of Columbia Public Schools (specific schools) and several more rural disadvantaged schools (Frederick and Howard Counties) in science teaching. We describe this program as a new in-school component, involving science clubs and lunch programs, patterned after our valuable summer science training modules and mentorship program. Our in-house program is at its maximum capacity at the Institute. Near-peer mentors will work in WRAIR's individual laboratories while perfecting/adapting hands-on activities for the new GEMS-X program to be carried out at McKinley Technology HS, Marian Koshland Museum, Roots Charter School and Lincoln Junior HS in DC, West Frederick Middle School, Frederick, MD and Folly Quarter Middle School and Glenelg HS, in Howard County, MD. Based on local demographics in these urban/rural areas, minority and disadvantaged youth, men and women, may choose science, mathematics, engineering and technology (SMET) careers with increasing frequency after participating, at such an early age, in specific learning in the quantitative disciplines. Many of these students take challenging courses within their schools, vastly improve their standardized test scores, take on internship opportunities, are provided recommendations from scientists and medical staff and ultimately are able to enter health professions that were previously unattainable. Relevance to Public Health: The Gains in the Education of Mathematis and Science (GEMS) program educates a diverse student population to benefit their science education and ultimately may improve the likelihood of successfully entry into a health or health-related professions for participating individuals. Medical education has been show to improve public health.
DATE: -
TEAM MEMBERS: Debra Yourick Marti Jett