Skip to main content

Community Repository Search Results

resource evaluation Afterschool Programs
The Arctic Harvest-Public Participation in Scientific Research (which encompasses the Winterberry Citizen Science program), a four-year citizen science project looking at the effect of climate change on berry availability to consumers has made measurable progress advancing our understanding of key performance indicators of highly effective citizen science programs.
DATE:
TEAM MEMBERS: Angela Larson Kelly Kealy Makaela Dickerson
resource evaluation Public Programs
This project builds off prior work conducted for the Science Center Public Forums project (NA15SEC008005) where eight forums were held at different sites across the US related to four climate hazards (drought, sea level rise, extreme heat, and extreme precipitation).
DATE:
resource evaluation K-12 Programs
We explored a long-standing community science partnership between the Science Museum of Virginia and Groundwork RVA, a local organization that connects youth with opportunities to enhance greenspaces in Richmond.
DATE:
TEAM MEMBERS: Claire Lucas Katie Chandler Ebony Bailey
resource project Public Programs
Environmental Protectors is a four-year project based at the University of California at Berkeley’s Lawrence Hall of Science. The project is designed to explore the educational and developmental impact of an informal science education programming model that features Community and Citizen Science (CCS) activities for youth of color residing in urban communities. The project is grounded in hypothesis that CCS-focused experiences result in learning outcomes that better position youth of color to more effectively engage in Science, Technology, Engineering, and Mathematics (STEM) related educational, occupational, and civic activities. Each year, in three economically challenged urban communities located throughout the country, youth of color between the ages of 14 and 18 will participate in month-long summer or semester-long afterschool programs. These programs will feature CCS-related activities that include collection, analysis, interpretation and presentation of data that addresses local, pressing environmental quality concerns, such as soil lead contamination and air particulate matter pollution. The project will use a mix of qualitative and quantitative data collection and analysis to assess the impact of youth engagement in these CCS activities. Overall, through its implementation the project aims to generate information useful in nationwide efforts designed to identify effective strategies and approaches that contribute to increasing STEM understanding and interest among youth of color.

Project research is guided by the following questions: A) What are ways to increase STEM engagement among those who have typically been underrepresented in Community and Citizen Science (CCS) research projects in particular and STEM in general? B) When youth are engaged in CCS, what outcomes are observed related to their science agency and science activism? What other unanticipated outcomes are observed related to benefits of participation and learning? C) How does science activism develop in youth participating in CCS?; and D) How do differences in program implementation impact youth outcomes. In particular, the project explores the manner in which particular CCS activities (e.g., project design, data analysis and interpretation, data presentation) impact youth “Science Agency,” defined as a combination of constructs that include Science Identity (i.e., sense of themselves as science thinkers), Science Value (i.e., awareness of the potential benefits of applying scientific practices to addressing critical community health and environmental issues) and Science Competency Beliefs (i.e., belief of themselves as competent science practitioners) and “Science Activism,” defined as a combination of perceived behavioral control and personal salience. Through its execution the project will refine a theory of learning that makes explicit connections between these constructs. Information derived from the execution of the project will contribute to deeper understanding of the potential for using of CCS projects as a key component of science education environments in urban areas and in general.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Kevin Cuff Mac Cannady Sarah Olsen
resource project Public Programs
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.

The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Katie Spellman Elena Sparrow Christa Mulder Deb Jones
resource project Public Programs
Public Participation in Scientific Research (PPSR), often referred to as crowdsourcing or citizen science, engages participants in authentic research, which both advances science discovery as well as increases the potential for participants' understanding and use of science in their lives and careers. This four year research project examines youth participation in PPSR projects that are facilitated by Natural History Museums (NHMs). NHMs, like PPSR, have a dual focus on scientific research and science, technology, engineering, and mathematics (STEM) education. The NHMs in this project have established in-person and online PPSR programs and have close ties with local urban community-based organizations. Together, these traits make NHMs appropriate informal learning settings to study how young people participate in PPSR and what they learn. This study focuses on three types of PPSR experiences: short-term outdoor events like bioblitzes, long-term outdoor environmental monitoring projects, and online PPSR projects such as crowdsourcing the ID of field observations. The findings of this study will be shared through PPSR networks as well as throughout the field in informal STEM learning in order to strength youth programming in STEM, such that youth are empowered to engage in STEM research and activities in their communities. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

The study employs observations, surveys, interviews, and learning analytics to explore three overarching questions about youth learning: 1) What is the nature of the learning environments and what activities do youth engage in when participating in NHM-led PPSR? 2) To what extent do youth develop three science learning outcomes, through participation in NHM-led citizen science programs? The three are: a) An understanding of the science content, b) identification of roles for themselves in the practice of science, and c) a sense of agency for taking actions using science? 3) What program features and settings in NHM-led PPSR foster these three science learning outcomes among youth? Based on studies occurring at multiple NHMs in the US and the UK, the broader impact of this study includes providing research-based recommendations for NHM practitioners that will help make PPSR projects and learning science more accessible and productive for youth. This project is collaboration between education researchers at University of California, Davis and Open University (UK), and Oxford University (UK) and citizen science practitioners, educators, and environmental scientists at three NHMs in the US and UK: NHM London, California Academy of Sciences, and NHM Los Angeles.
DATE: -
TEAM MEMBERS: Heidi Ballard Lila Higgins Alison Young
resource project Media and Technology
Public Participation in Scientific Research (PPSR), often referred to as crowdsourcing or citizen science, engages participants in authentic research, which both advances science discovery as well as increases the potential for participants' understanding and use of science in their lives and careers. This four year research project examines youth participation in PPSR projects that are facilitated by Natural History Museums (NHMs). NHMs, like PPSR, have a dual focus on scientific research and science, technology, engineering, and mathematics (STEM) education. The NHMs in this project have established in-person and online PPSR programs and have close ties with local urban community-based organizations. Together, these traits make NHMs appropriate informal learning settings to study how young people participate in PPSR and what they learn. This study focuses on three types of PPSR experiences: short-term outdoor events like bioblitzes, long-term outdoor environmental monitoring projects, and online PPSR projects such as crowdsourcing the ID of field observations. The findings of this study will be shared through PPSR networks as well as throughout the field in informal STEM learning in order to strength youth programming in STEM, such that youth are empowered to engage in STEM research and activities in their communities. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

The study employs observations, surveys, interviews, and learning analytics to explore three overarching questions about youth learning: 1) What is the nature of the learning environments and what activities do youth engage in when participating in NHM-led PPSR? 2) To what extent do youth develop three science learning outcomes, through participation in NHM-led citizen science programs? The three are: a) An understanding of the science content, b) identification of roles for themselves in the practice of science, and c) a sense of agency for taking actions using science? 3) What program features and settings in NHM-led PPSR foster these three science learning outcomes among youth? Based on studies occurring at multiple NHMs in the US and the UK, the broader impact of this study includes providing research-based recommendations for NHM practitioners that will help make PPSR projects and learning science more accessible and productive for youth. This project is collaboration between education researchers at University of California, Davis and Open University (UK), and Oxford University (UK) and citizen science practitioners, educators, and environmental scientists at three NHMs in the US and UK: NHM London, California Academy of Sciences, and NHM Los Angeles.
DATE: -
TEAM MEMBERS: Heidi Ballard Alison Young Lila Higgins Lucy Robinson Christothea Herodotou Grant Miller
resource project Media and Technology
People of color who live in low income, urban communities experience lower levels of educational attainment than whites and continue to be underrepresented in science at all educational and professional levels. It is widely accepted that this underrepresentation in science is related, not only to processes of historical exclusion and racism, but to how science is commonly taught and that investigating authentic, relevant science questions can improve engagement and learning of underrepresented students. Approaching science in these ways, however, requires new teaching practices, including ways of relating cross-culturally. In addition to inequity in science and broader educational outcomes, people of color from low income, urban communities experience high rates of certain health problems that can be directly or indirectly linked to mosquitoes. Recognizing that undertaking public health research and preventative outreach efforts in these communities is challenging, there is a critical need for an innovative approach that leverages local youth resources for epidemiological inquiry and education. Such an approach would motivate the pursuit of science among historically-excluded youth while, additionally, involving pre-service, in-service, and informal educators in joint participatory inquiry structured around opportunities to learn and practice authentic, ambitious science teaching and learning.

Our long-term goal is to interrupt the reproduction of educational and health disparities in a low-income, urban context and to support historically-excluded youth in their trajectories toward science. This will be accomplished through the overall objective of this project to promote authentic science, ambitious teaching, and an orientation to science pursuits among elementary students participating in a university-school-community partnership promise program, through inquiry focused on mosquitoes and human health. The following specific aims will be pursued in support of the objective:

1. Historically-excluded youth will develop authentic science knowledge, skills, and dispositions, as well as curiosity, interest, and positive identification with science, and motivation for continued science study by participating in a scientific community and engaging in the activities and discourses of the discipline. Teams of students and educators will engage in community-based participatory research aimed at assessing and responding to health and well-being issues that are linked to mosquitoes in urban, low-income communities. In addition, the study of mosquitoes will engage student curiosity and interest, enhance their positive identification with science, and motivate their continued study.

2. Informal and formal science educators will demonstrate competence in authentic and ambitious science teaching and model an affirming orientation toward cultural diversity in science. Pre-service, in-service, and informal educators will participate in courses and summer institutes where they will be exposed to ambitious teaching practices and gain proficiency, through reflective processes such as video study, in adapting traditional science curricula to authentic science goals that meet the needs of historically excluded youth.

3. Residents in the community will display more accurate understandings and transformed practices with respect to mosquitoes in the urban ecosystem in service of enhanced health and well-being. Residents will learn from an array of youth-produced, culturally responsive educational materials that will be part of an ongoing outreach and prevention campaign to raise community awareness of the interplay between humans and mosquitoes.

These outcomes are expected to have an important positive impact because they have potential for improving both immediate and long-term educational and health outcomes of youth and other residents in a low-income, urban community.
DATE: -
TEAM MEMBERS: Katherine Richardson Bruna Lyric Colleen Bartholomay
resource project Public Programs
San Francisco Health Investigators (SF HI), developed and led by the Science & Health Education Partnership at UC San Francisco, will use a community-based participatory research model to provide authentic research experiences for high school students, the majority from backgrounds underrepresented in the sciences.

SF HI will:
1) Develop a community of high school Student Researchers who will conduct research into health issues in their communities, study how adolescents respond to health messages, create new health messages informed by this research, and study the broader impacts of the materials they develop.
2) Partner with educational researchers to research the effects of SF HI on the high school student participants and the impact of the materials on the broader community.
3) Disseminate those materials shown to have the greatest impact nationally.
4) Publish results on the public understanding and awareness of health issues in peer-reviewed journals and other forums to inform and advance the field of public health.

The SF HI model is designed to leverage students’ cultural and technological knowledge and their social capital in the role of Student Researchers as they study the awareness, knowledge and attitudes about current health issues in their communities. It will have a broad range of impacts. Over the course of the project, 100 urban public high school students will be immersed in research projects that have the potential to directly benefit the health of their communities. These Student Researchers will design health messages informed by their social, cultural, and community knowledge and by their research results. They will collectively survey more than 8,500 community members – their peers, neighbors, and attendees at public gatherings to assess the effectiveness of these materials. Student-developed materials will be distributed broadly via the web, high school and college wellness centers, the NIH SEPA community, and other networks – thus these materials have the potential to reach over 1.5 million adolescents and young adults over the life of the project.
DATE: -
TEAM MEMBERS: Rebecca Smith Katherine Nielsen
resource project Public Programs
Citizen science refers to partnerships between volunteers and scientists that answer real world questions. The target audiences in this project are middle and high school teachers and their students in a broad range of settings: two urban districts, an inner-ring suburb, and three rural districts. The project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings. Through district professional learning communities (PLCs), teachers work with district and project staff to support and demonstrate project implementation. As students and their teachers engage in project activities, the project team is addressing two key research questions: 1) What is the nature of instructional practices that promote student engagement in the process of science?, and 2) How does this engagement influence student learning, with special attention to the benefits of engaging in research presentations in public, high profile venues? Key contributions of the project are stronger connections between a) ecology-based citizen science programs, STEM curriculum, and students' lives and b) science learning and disciplinary literacy in reading, writing and math.

Research design and analysis are focused on understanding how professional development that involves citizen science and independent investigations influences teachers' classroom practices and student learning. The research utilizes existing instruments to investigate teachers' classroom practices, and student engagement and cognitive activity: the Collaboratives for Excellence in Teacher Preparation and Classroom Observation Protocol, and Inquiring into Science Instruction Observation Protocol. These instruments are used in classroom observations of a stratified sample of classes whose students represent the diversity of the participating districts. Curriculum resources for each citizen science topic, cross-referenced to disciplinary content and practices of the NGSS, include 1) a bibliography (books, web links, relevant research articles); 2) lesson plans and student science journals addressing relevant science content and background on the project; and 3) short videos that help teachers introduce the projects and anchor a digital library to facilitate dissemination. Impacts beyond both the timeframe of the project and the approximately 160 teachers who will participate are supported by curriculum units that address NGSS life science topics, and wide dissemination of these materials in a variety of venues. The evaluation focuses on outcomes of and satisfaction with the summer workshop, classroom incorporation, PLCs, and student learning. It provides formative and summative findings based on qualitative and quantitative instruments, which, like those used for the research, have well-documented reliability and validity. These include the Science Teaching Efficacy Belief Instrument to assess teacher beliefs; the Reformed Teaching Observation Protocol to assess teacher practices; the Standards Assessment Inventory to assess PLC quality; and the Scientific Attitude Inventory to assess student attitudes towards science. Project deliverables include 1) curriculum resources that will support engagement in five existing citizen science projects that incorporate standards-based science content; 2) venues for student research presentations that can be duplicated in other settings; and 3) a compilation of teacher-adapted primary scientific research articles that will provide a model for promoting disciplinary literacy. The project engages 40 teachers per year and their students.
DATE: -
TEAM MEMBERS: Karen Oberhauser Michele Koomen Gillian Roehrig Robert Blair Andrea Lorek Strauss
resource project Public Programs
With the Museum's increasing interest in urban biodiversity, we have started looking at all types of wildlife in our highly modified industrial, suburban, and urban habitats. One thing that quickly struck us was that in our own backyard, Exposition Park, nobody had documented any lizards since 1988. This seemed strange, as lizards are common in other parts of Los Angeles, and it led to the question, "Why are there no lizards here?" We hope to answer this question with the LLOLA (pronouced "lola") project. LLOLA aims to do two things: 1) Confirm the presence or absence of lizards in Exposition park. (After all, nobody has looked extensively for them! 2) Find out where lizards DO occur in the Los Angeles Basin, and start to hypothesize why they can survive there.
DATE: -
TEAM MEMBERS: Greg Pauly Richard Smart Lila Higgins
resource project Public Programs
Ornithology is one of the few scientific disciplines to which amateurs can still make significant contributions. Whether they observe birds at a feeder, count birds for a national census, or conduct a simple experiment, their activities contribute greatly to our knowledge of birds. Furthermore, participants in bird study programs not only learn about birds, they also become more aware of environmental problems. The Cornell Laboratory of Ornithology exists to facilitate such amateur involvement and education. This proposal is aimed at strengthening our education programs and expanding them to include under-served audiences in the inner city. We propose to evaluate the extent to which our radio program, magazine, and Project FeederWatch appeal to various audiences and how effective these programs are at communicating information about birds and in stimulating involvement. Based on this evaluation, we will modify our programs, then evaluate them again. We are also proposing a brand-new volunteer-assisted data gathering program, which we call the National Science Experiment. In cooperation with other organizations, volunteers will look at the biology of pigeons in our cities, food preferences of winter birds across the United States, and the habitat requirements of neotropical migrant tanagers. The results of these studies will be of interest to both ornithologists and birders; furthermore, participants in the project will gain first-hand involvement with the process of science.
DATE: -
TEAM MEMBERS: Rick Bonney Gregory Butcher