Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Tino Nyawelo Sarah Braden Jordan Gerton John Matthews Ricardo Gonzalez
resource research Informal/Formal Connections
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Barry Fishman Leslie Herrenkohl Nichole Pinkard Katie Headrick Taylor Yolanda Majors
resource project Informal/Formal Connections
This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

This project will create the specification for a learner-controlled system to represent youth learning in Out-of-School-Time (OST) settings, to improve access to future Science, Technology, Engineering, and Mathematics (STEM) learning opportunities. For learners to pursue a STEM education, and STEM careers, they must be able to move through "gatekeeping" mechanisms that filter and sort students based on factors such as prior coursework and grades, teacher recommendations, and language proficiency assessments. Even though abundant evidence shows that such measures fail to capture all important aspects of STEM learning, they are traditionally relied upon in secondary and post-secondary STEM education contexts as indicators of preparation for future STEM learning. These systemic processes exclude certain minoritized groups, including Black, Indigenous, and other people of color (BIPOC), low income, immigrant and refugee youth, and youth learning English, from high-quality secondary and post-secondary STEM learning experiences because existing measures do not validate their prior knowledge and experiences. Yet, minoritized youth often engage in OST STEM learning opportunities, where their readiness for future learning opportunities is nurtured and valued. One challenge is to reliably document this readiness in a usable format so youth can access new STEM learning opportunities, especially in post-secondary contexts. This project builds strategically upon earlier work focusing on the democratization of STEM learning through vehicles such as digital micro-credentials or badges, and upon digital portfolios. Missing from these earlier efforts was integration of these platforms with an infrastructure that connected youth learners to OST STEM learning organizations and to future STEM learning opportunities. This Innovations in Development project brings together minoritized youth and their families, OST providers, and admissions officials from higher education institutions to explore the needed design features for OST "transcripts," and user stories that describe how software systems can support their creation and sharing. Grounded in the concept of mastery-based learning, where learning is demonstrated via action, learners will control what is included in the transcript so that they create their own narratives about their learning experiences. Recognizing that documentation is not the key focus of most STEM OST organizations, this project will provide direct support for identifying and codifying learning goals or outcomes that learners and their families find relevant and important within different STEM activities. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

The project will take a Design-Based Implementation Research (DBIR) approach and proceed by convening representatives from three main stakeholder groups (youth and their families, OST providers, and admissions staff) to engage in a series of discovery and design activities. Project partners, including the Mastery Transcript Consortium (MA), STEAMville (IL), STUDIO (WA), and Wolverine Pathways (MI), will work together with the PIs to design templates learners can use to characterize STEM learning from each provider, aligned with different STEM learning foci (e.g., computer science, computational thinking, cross-cutting concepts, science and engineering practices, and mathematics). Data collected from these sessions will be used to address the following research questions: (1) How and why do youth and families from minoritized communities understand and choose to participate in STEM OST learning opportunities?, (2) How do youth understand and interact with STEM OST learning opportunities?, (3) How do OST providers characterize the STEM learning goals in the activities they provide?, and (4) How do college admissions personnel view the role of informal STEM learning as part of a holistic admissions process? This work has the potential to further the understanding of how OST learning can be documented and shared as a part of the larger ecosystem of STEM learning trajectories. By deeply engaging the perspectives and voices of minoritized youth and families, this project seeks to develop a valid and trustworthy instrument that recognizes and serves their STEM learning, thus broadening the participation of minoritized youth in STEM education and careers. This work will also benefit OST providers, by translating the documentation of youth STEM learning into forms that may help communicate the efficacy of their programs in ways that further their missions, including communicating evidence of effectiveness to both future participants and funders.
DATE: -
TEAM MEMBERS: Barry Fishman Leslie Herrenkohl Katie Headrick Taylor Nichole Pinkard
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project would expand the informal STEM learning field's understanding of how to use digital science media to increase STEM educational experiences and opportunities for English language learners. Across the U.S. there are significant STEM opportunity and achievement gaps for English learners with varying levels of English proficiency. This is at a time when the U.S. is facing a shortage of STEM professionals in the workforce including the life and physical science fields. This project aims to close these gaps and improve English learners' STEM learning outcomes using digital media. Within community colleges, there are multiple site-based programs to provide content to help English learners to learn English and to improve their math and literacy skills. Involving the state community college networks is a critical strategy for gathering important feedback for the pedagogical approach as well as for recruiting English learner research participants. The team will initially study an existing YouTube chemistry series produced by Complexly then produce and test new videos in Spanish using culturally relevant instructional strategies. The target audience is 18-34-year-old English learners. Project partners are Complexly, a producer of digital STEM media and EDC, a research organization with experience in studying informal STEM learning.

The project has the potential to advance knowledge about the use of culturally relevant media to improve STEM opportunities and success for English language learners. Using a Design-Based Implementation Research framework the research questions include: 1) what are the effective production and instructional strategies for creating digital media to teach science to English learners whose native language is Spanish? 2) what science content knowledge do English learners gain when the project's approach is applied to a widely available set of YouTube videos? and 3) how might the findings from the research be applied to future efforts targeting English learners? The project has the potential to significantly broaden participation in science and engineering. Phase 1 of the research will be an exploration of how to apply strategic pedagogical approaches to digital media content development. Interviews will be conducted with educators in 3 focal states with high numbers of English language learners (NY, CA, TX) to reflect on pedagogical foundations for teaching science to English learners. A survey of 30 English learners will provide feedback on the perceived strengths and weaknesses of a selection of existing YouTube chemistry videos. Phase 2 will create/test prototypes of 6 adapted chemistry videos. Forty students (ages 18-34) will be recruited and participate in cognitive interviews with researchers after viewing these videos. Based on this input additional videos will be produced with revised instructional strategies for further testing. Additional rounds of production and testing will be conducted to develop an English learners mini chemistry series. Phase 3 will be a pilot study to gauge the science learning of 75 English learners who will view an 11-episode chemistry miniseries. It will also identify gaps in expected learning to determine whether any further adjustments are necessary to the instructional approach.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Kelsey Savage Ceridwen Riley Stan Muller Heather Lavigne Caroline Parker Katrina Bledsoe
resource project Public Programs
Many of the Hispanic children and families who live in the Rio Grande Valley lack opportunities to engage in inspirational and educational experiences introducing Science, Technology, Engineering and Mathematics (STEM) concepts and related careers. The University of Texas, Rio Grande Valley (UTRGV) will adapt and research the "Energy and U Show," which will introduce thousands of children and families to an exciting and dramatic that shows interconverting different forms of energy. The show will meld the excitement of chemical demonstrations and the natural connection between energy and STEM education in a fully produced, on-stage science extravaganza. A foundational philosophy of the show is that there is additional real value in getting children and youth onto a college campus. For many of its participants, this is their first time sitting in a seat at a university, the first opportunity for them to envision themselves in this environment. In partnership with the University of Minnesota, which originally developed the show, UTRGV will adapt the show, now presented in English, to a bilingual, culturally accessible format that is designed to Hispanic family audiences and student groups in learning about energy and related careers. Evaluation results demonstrate that the show has effectively engaged thousands of Minnesota students. The target audience will be upper elementary (4th-5th grade), middle school students, and their parents. This project will be led by UTRGV, nation's second-largest Hispanic Serving Institution, with a student enrollment of 28,000, of which over 90% are Hispanic and more than 60% are first-generation college students). In addition to the show, the project will include: (1) a manual to guide implementation of the program and related resources at different national or international venues; (2) educational resources for parents, teachers and school counselors introducing STEM careers and specific STEM college majors; (3) mentoring of UTRGV faculty in outreach activities; and (4) dissemination of the show to other campuses and venues.

The project will conduct ongoing research and evaluation guiding the adaptation of the show and investigation of factors contributing to positive educational impacts of the project, which will be carried out by a bilingual/bicultural researcher. Project research instruments will measure student level of engagement, interest and learning, as well as college interest, in surveys and analysis of data pre and post demonstration. The project will specifically investigate the impact of language on student impacts. Each component of this project will be studied to determine program intervention effectiveness (the scientific demonstration and language of the demonstration). To determine program effectiveness, a baseline of data before program implementation will be established concerning Hispanic students, their persistence, and perceptions of the environment. The project will measure parent perceptions of STEM careers for their children through pre and post demonstration surveys and focus groups. Student and parent research participants will be able to use surveys or respond to other research activities in the language of their choice. Project findings will contribute to the knowledge base concerning how linguistically and culturally adapted science shows and related resources adapted into can have positive impacts regarding the STEM knowledge and careers of students and parents from low-income and Hispanic communities.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Karen Lozano Arturo Fuentes Aaron Massari Brian Warren
resource project Museum and Science Center Programs
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE: -
TEAM MEMBERS: Maritza Macdonald Meryle Weinstein Rosamond Kinzler Mordecai-Mark Mac Low Edmond Mathez David Silvernail
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project will develop and test intergenerational science media resources for parents that are participating in adult education programs and their young children. The materials will build on the research-based and successful children's television program, Fetch with Ruff Ruffman. The target audience includes parents enrolled in adult education programs who lack a high school diploma or are in English as a Second Language classes. These resources will support parents' engagement in science activities with their children both in the adult education settings as well as at home. Adult and family educators will receive professional development resources and training to support their integration of the parent/child activities. Project partners include the National Center for Families Learning, Kentucky Educational Television, and Alabama Public Television,

The goals of the Ruff Family Science project are to: (1) investigate adult education settings that feature an intergenerational learning model, in order to learn about the unique characteristics of adults and families who are enrolled in these programs; (2) examine the institutional circumstances and educator practices that support joint parent/child engagement in science; (3) iteratively develop new prototype resources meet the priorities and needs of families and educators involved in intergenerational education settings; and (4) develop the knowledge needed to create a fuller set of materials in the future that will motivate and support diverse, low-income parents to investigate science with their children. The research strategy is comprised of three main components: Phase 1: Needs Assessment: Determine key motivations and behaviors common to adult education students who are also parents; surface obstacles and assets inherent in these parents' current practices; and examine the needs and available resources for supplementing parents' current engagement in family science learning. Phase 2: Prototype Development: Iteratively develop two prototype Activity Sets, along with related educator supports and training materials, designed to promote joint parent-child engagement with English and Spanish-speaking families around physical science concepts. Phase 3: Prototype Field Test: Test how the two refined prototype Activity Sets work in different educational settings (adult education, parent education, and parent and child together time). Explore factors that support or impede effective implementation. Sources of data for the study include observations of adult and parent education classes using an expert interview protocol, focus groups, adult and family educator interviews, and parent surveys.
DATE: -
TEAM MEMBERS: Mary Haggerty Heather Lavigne Jessica Andrews
resource research Professional Development, Conferences, and Networks
Scientists for whom English is not their first language report disadvantages with academic communication internationally. This case study explores preliminary evidence from non-Anglophone scientists in an Australian research organisation, where English is the first language. While the authors identified similarities with previous research, they found that scientists from non-Anglophone language backgrounds are limited by more than their level of linguistic proficiency in English. Academic science communication may be underpinned by perceptions of identity that are defined by the Anglocentric
DATE:
TEAM MEMBERS: Adam Huttner-Koros Sean Perera
resource project Professional Development, Conferences, and Networks
A partnership of institutions and organizations from public and private sectors, all with an established record in advancing Hispanics in higher education, will form a networked community across regions of the United States with significant Hispanic populations to collectively adapt and adopt proven practices and apply them throughout the higher education system of two-year colleges and baccalaureate-, master's-, and doctorate-granting universities. The partnership builds on the successful NSF-funded Computing Alliance of Hispanic-Serving Institutions (CAHSI) that has emerged as a significant pipeline of new recruits into computing graduate studies, industry, and the professoriate throughout the nation. Even through the Hispanic population has reached 17% nationally, a mere 4% STEM Master's and 3% STEM doctorate degrees are awarded nationwide to Hispanics in 2012-2013. The desperate need to reach parity is clear. The shared purpose and bold vision of the effort is to achieve parity in the number of Hispanics who complete computation-based graduate studies. The focus will be on targeting the pool of talented students at Hispanic-Serving Institutions (HSIs) who, for various reasons, do not choose to continue on STEM educational and career pathways. The efforts will focus on transitioning Hispanic students from associate degree programs to baccalaureate programs, and from baccalaureate programs (regardless of where they began their studies) to completion of graduate degrees.

The project will establish a common agenda that guides the vision and strategy for collective impact, conduct data collection to longitudinally track student movement across campuses, and launch a multi-site pilot to test feasibility of the full-scale plan and process for change. While prior research has identified strategies for increasing graduate program completion rates for underrepresented minorities, little attention has been paid to the role of HSIs in reducing attrition. Attention to HSIs is a critical element in developing successful pathways to STEM careers. The networked community will involve social scientists across the different regions in research on Hispanic graduate program completion, to complement existing research on undergraduate completion. Developing a comprehensive, scalable model for cross-institutional advancement of students, in particular the combination of a bilingual and bicultural student body with unique needs, is critical to grow the STEM pipeline. Through a pilot, the project will engage two-year colleges and universities to begin the initial investigation on the impact of building strong student identity, student belonging, advocacy, and preparation on accelerating the number of students entering, persisting in the major, and considering, entering, and ultimately completing graduate studies in computational areas.
DATE: -
TEAM MEMBERS: Ann Gates Marjorie Zatz Mohsen Beheshti Enrico Pontelli Aaron Velasco
resource project Informal/Formal Connections
The INCLUDES project will build on the Leveraging and Integrating New Knowledge in STEMS (LINKS) framework that was developed at the University of Rochester to target students participating in Upward Bound programs at four institutions that will comprise the Upstate NY Alliance: Cornell University, D'Youville College, Monroe Community College, and the University of Rochester. The project will increase curricular and experiential learning offerings to underserved students by integrating faculty and graduate students into Upward Bound programs. Applying the LINKS framework, educators will learn and develop new means for managing classroom diversity, including ethnicity, language, age, educational background, and other cultural markers that shape the way students learn. The team will develop and disseminate best practices on creating inclusive teaching and research environments. The Upstate NY Alliance will produce a proof of concept model for national scale-up with measurable outcomes for varying populations of at-risk high school students.

The Alliance will strive to translate and further develop the LINKS framework within the context of each of the varied institutional environments, resulting in a more robust model that draws from the strengths of all of the schools with a core focus and range of applications. The project will create a diverse collegial community dedicated to bridging the gap between P-12 and higher education learning environments. It also will implement a clearly-articulated and successful collaboration among the four institutions that will provide multiple opportunities to share best practices, engage in cross-institution dialog, and leverage each member's strengths to enhance and further develop the LINKS framework.
DATE: -
TEAM MEMBERS: Beth Olivares Laurel Sanger Jason Adsit Kathryn Dimiduk Wendi Heinzelman
resource project Professional Development, Conferences, and Networks
This CAREER grant interweaves research and teaching focused on understanding how social groups construct meaning during scientific conversations across different learning contexts, such as classrooms, museums and the home. This work will be translated into formal educational settings and used to inform teaching practices within pre-service University and in-service school district settings. The research and educational emphasis will be on creating conceptual links between social learning in diverse settings and the creation of corridors of opportunity between formal and informal learning institutions. To date there has been little research with families from cultural and linguistic minority populations, such as Latino families, at informal learning settings and virtually none that integrates formal and informal learning, or impacts teaching. The five-year project will: 1. Conduct Study 1, aimed at making fundamental cross-cultural comparisons of family conversational meaning making at the Monterey Bay Aquarium and linking this work with family interviews, reflective conversations and visits to family homes; 2. Review the theoretical framework and conduct Study 2, which will incorporate lessons learned from Study 1, and linking this research to formal classrooms; and 3. Use the findings (at each stage) to inform teaching practice with UCSC undergraduate (Science majors) and graduate (Science credential, MA and Ph.D.) students, and, in collaboration with teacher research groups for new and experienced teacher in schools that serve predominantly Latino students. This research plan provides an opportunity for viewing several inter-connected mechanisms, including family interactions and conversations, compelling science content, naturalistic learning in museum settings, and, finally, analyzing these factors in order to inform teaching practices that promote bilingual minority students to the rank of scientists.
DATE: -
TEAM MEMBERS: Doris Ash
resource project Media and Technology
The Self-Reliance Foundation (SRF) Conociendo Tu Cuerpo (Know Your Body) Hispanic Community Health Sciences Education project is an initiative designed to introduce Hispanic students and families to biomedical science and health education resources, and increase their participation levels in these fields. The educational goals of the project are to: (1) Encourage Hispanic undergraduate students to pursue careers in biomedicine and science through a mentoring program at the university level; (2) Inspire an interest in biomedical science among Hispanic elementary-age students and parents through community outreach activities; (3) Inform Hispanic parents about biomedical science education standards and academic requirements for pursuing biomedical and science related careers; and (4) Inform and inspire Hispanic students and their families about the biomedical sciences and related careers through a series of daily nationally broadcast Spanish-language radio capsules, and a nationally syndicated Spanish newspaper column. Conociendo Tu Cuerpo (Know Your Body) includes several key components: A model, Washington, D.C., area coalition of informal science, health, community, education, and media organizations that will publicize and provide hands-on health science activities at community festivals and other community settings; Hispanic undergraduate student health-science fellows to be trained and provided experience in facilitating health science activities; and nationally broadcast Spanish-language radio capsules that will cover topics in areas of biomedicine, research, education, and health-science careers. Parents and students will be able to access additional information about biomedical science opportunities and Hispanic role models in the biomedical sciences through the project's Conociendo Tu Cuerpo website and the bilingual 800 telephone help line promoted by 147 participating radio stations and 102 newspapers nationwide. The project will be supported at the national level through collaboration with the Hispanic Radio Network and the Pacific Science Center. The Washington, D.C., collaborative will include the Capital Children's Museum, local Spanish language radio stations, area universities, and health and community organizations. Development Associates, the largest American education and evaluation consulting corporation, will evaluate the project.
DATE: -
TEAM MEMBERS: Robert Russell Liza Fuentes