Skip to main content

Community Repository Search Results

resource project Public Programs
Computing and computational thinking are integral to the practice of modern science, technology, engineering, and math (STEM); therefore, computational skills are essential for students' preparation to participate in computationally intensive STEM fields and the emerging workforce. In the U.S., Latinx and Spanish speaking students are underrepresented in computing and STEM fields, therefore, expanding opportunities for students to learn computing is an urgent need. The Georgia Institute of Technology and the University of Puerto Rico will collaborate on research and development that will provide Latinx and Spanish speaking students in the continental U.S. and Puerto Rico, opportunities to learn computer science and its application in solving problems in STEM fields. The project will use a creative approach to teaching computer science by engaging Latinx and Spanish speaking students in learning how to code and reprogram in a music platform, EarSketch. The culturally relevant educational practices of the curriculum, as a model for informal STEM learning, will enable students to code and reprogram music, including sounds relevant to their own cultures, community narratives, and cultural storytelling. Research results will inform education programs seeking to design culturally authentic activities for diverse populations as a means to broaden participation in integrated STEM and Computing. This Broad Implementation project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments, including multiple pathways for broadening access to and engagement in STEM learning, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

As part of the technical innovation of the project, the EarSketch platform will be redesigned for cultural and linguistic authenticity that will include incorporating traditional and contemporary Latin sound beats and musical samples into the software so that students can remix music and learn coding using sounds relevant to their cultures; and developing a Spanish version of the platform, with a toggle to easily switch between English and Spanish. Investigators will also develop an informal STEM curriculum using best practices from Culturally Relevant Education and Cultural Sustaining Pedagogy that provides authentic, culturally and linguistically rich opportunities for student engagement by establishing direct and constant connections to their cultures, communities and lived experiences. The curriculum design and implementation team will work collaboratively with members of Latinx diverse cultural groups to ensure semantic and content equivalency across diverse students and sites. Validating the intervention across students and sites is one of the goals of the project. The model curriculum for informal learning will be implemented as a semester long afterschool program in six schools per year in Atlanta and Puerto Rico, and as a one-week summer camp twice in the summer. The curricular materials will be broadly disseminated, and training will be provided to informal learning practitioners as part of the project. The research will explore differences in musical and computational engagement; the interconnection between music and the computational aspects of EarSketch; and the degree to which the program promotes cultural engagement among culturally and linguistically heterogenous groups of Latinx students in Atlanta, and more culturally and linguistically homogenous Latinx students in Puerto Rico. Investigators will use a mixed method design to collect data from surveys, interviews, focus groups, and computational/musical artifacts created by students. The study will employ multiple case study methodology to analyze and compare the implementation of the critical components of the program in Puerto Rico and Atlanta, and to explore differences in students' musical and computational thinking practices in the two regions. Results from the research will determine the impact of the curriculum on computer science skills and associated computational practices; and contribute to the understanding of the role of cultural engagement on educational outcomes such as sense of belonging, persistence, computational thinking, programming content knowledge and computer science identity. Results will inform education programs designing culturally authentic and engaging programming for diverse populations of Latinx youths.
DATE: -
TEAM MEMBERS: Diley Hernandez Jason Freeman Douglas Edwards Rafael Arce-Nazario Joseph Carroll-Miranda
resource project Public Programs
While the term 'failure' brings to mind negative associations, there is a current focus on failure as a driver of innovation and development in many professional fields. It is also emerging from prior research that for STEM professionals and educators, failure plays an important role in designing and making to increase learning, persistence and other noncognitive skills such as self-efficacy and independence. By investigating how youth and educators attend to moments of failure, how they interpret what this means, and how they respond, we will be better able to understand the dynamics of each part of the experience. The research team will be working with youth from urban, suburban and rural settings, students from Title I schools or who qualify for free/reduced-price lunches, those from racial and ethnic minority groups, as well as students who are learning English as a second language. These youth are from groups traditionally underrepresented in STEM and in making, and research indicates they are more likely to experience negative outcomes when they experience failure.

The intellectual merit of this project centers on establishing a baseline understanding of how failure in making is triggered and experienced by youth, what role educators play in the process, and what can be done to increase persistence and learning, rather than failure being an end-state. The research team will investigate these issues through the use of qualitative and quantitative research methods. In particular, the team will design and evaluate the effectiveness of interventions on increasing the abilities of youth and educators in noticing and responding to failures and increasing positive (e.g., resilience) outcomes. Research sites are selected because they will allow collection of data on youth from a wide range of backgrounds. The research team will also work to test and revise their hypothesized model of the influence of factors on persistence through failures in making. This project is a part of NSF's Maker Dear Colleague Letter (DCL) portfolio (NSF 15-086), a collaborative investment of Directorates for Computer & Information Science & Engineering (CISE), Education and Human Resources (EHR) and Engineering (ENG).
DATE: -
TEAM MEMBERS: Adam Maltese Amber Simpson Alice Anderson
resource project Public Programs
The youth-based ITEST proposal, Invention, Design, Engineering and Art Cooperative (IDEA), will provide 100 students in grades 8-12 from the East Side of St. Paul, Minnesota with IT experiences in engineering and design. The content focus is mechanical and electrical engineering, such as product design, electronics, and robotics with an emphasis on 21st century job skills, including skills in advanced areas of microcontrollers, sensors, 3-D modeling software, and web software development for sharing iterative engineering product design ideas and maintaining progress on student product development. These technologies are practical and specific to careers in engineering and standards for technological literacy. During the three-year project period, a scaffolding process will be used to move students from exploratory activities in Design Teams in the 8th and 9th grades to paid employment experiences in grades 10-12 as part of Invention Crews. All design and product invention work will be directly connected to solving problems for local communities, including families and local businesses. For grades 8 and 9, students will receive 170 total contact hours per year and for grades 10-12, 280 contact hours per year. The participant target goal is 75% participation by girls, and African-American and Latino youth. Students participating in this project are situated within the country's most diverse urban districts with students speaking more than 103 languages and dialects. The schools targeted by this project average 84% of students receiving free or reduced price lunches, and have a population with 81% falling below proficiency in the Grade 8/11 Math MCA-II Test. To achieve the project goals of recruiting underrepresented students, and supporting academic transitions from middle and high school to college and university, the project team aggregated an impressive group of project partners that include schools, colleges, universities, and highly experienced youth and community groups, technology businesses that will provide mentoring of students and extensive involvement by parent and family services. Every partner committed to the project has a longstanding and abiding commitment to serving students from economically challenged areas.
DATE: -
TEAM MEMBERS: Anika Ward Kristen Murray Rachel Gates David Gundale