Skip to main content

Community Repository Search Results

resource project Museum and Science Center Programs
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE: -
TEAM MEMBERS: Maritza Macdonald Meryle Weinstein Rosamond Kinzler Mordecai-Mark Mac Low Edmond Mathez David Silvernail
resource project Professional Development, Conferences, and Networks
A partnership of institutions and organizations from public and private sectors, all with an established record in advancing Hispanics in higher education, will form a networked community across regions of the United States with significant Hispanic populations to collectively adapt and adopt proven practices and apply them throughout the higher education system of two-year colleges and baccalaureate-, master's-, and doctorate-granting universities. The partnership builds on the successful NSF-funded Computing Alliance of Hispanic-Serving Institutions (CAHSI) that has emerged as a significant pipeline of new recruits into computing graduate studies, industry, and the professoriate throughout the nation. Even through the Hispanic population has reached 17% nationally, a mere 4% STEM Master's and 3% STEM doctorate degrees are awarded nationwide to Hispanics in 2012-2013. The desperate need to reach parity is clear. The shared purpose and bold vision of the effort is to achieve parity in the number of Hispanics who complete computation-based graduate studies. The focus will be on targeting the pool of talented students at Hispanic-Serving Institutions (HSIs) who, for various reasons, do not choose to continue on STEM educational and career pathways. The efforts will focus on transitioning Hispanic students from associate degree programs to baccalaureate programs, and from baccalaureate programs (regardless of where they began their studies) to completion of graduate degrees.

The project will establish a common agenda that guides the vision and strategy for collective impact, conduct data collection to longitudinally track student movement across campuses, and launch a multi-site pilot to test feasibility of the full-scale plan and process for change. While prior research has identified strategies for increasing graduate program completion rates for underrepresented minorities, little attention has been paid to the role of HSIs in reducing attrition. Attention to HSIs is a critical element in developing successful pathways to STEM careers. The networked community will involve social scientists across the different regions in research on Hispanic graduate program completion, to complement existing research on undergraduate completion. Developing a comprehensive, scalable model for cross-institutional advancement of students, in particular the combination of a bilingual and bicultural student body with unique needs, is critical to grow the STEM pipeline. Through a pilot, the project will engage two-year colleges and universities to begin the initial investigation on the impact of building strong student identity, student belonging, advocacy, and preparation on accelerating the number of students entering, persisting in the major, and considering, entering, and ultimately completing graduate studies in computational areas.
DATE: -
TEAM MEMBERS: Ann Gates Marjorie Zatz Mohsen Beheshti Enrico Pontelli Aaron Velasco
resource project Informal/Formal Connections
The INCLUDES project will build on the Leveraging and Integrating New Knowledge in STEMS (LINKS) framework that was developed at the University of Rochester to target students participating in Upward Bound programs at four institutions that will comprise the Upstate NY Alliance: Cornell University, D'Youville College, Monroe Community College, and the University of Rochester. The project will increase curricular and experiential learning offerings to underserved students by integrating faculty and graduate students into Upward Bound programs. Applying the LINKS framework, educators will learn and develop new means for managing classroom diversity, including ethnicity, language, age, educational background, and other cultural markers that shape the way students learn. The team will develop and disseminate best practices on creating inclusive teaching and research environments. The Upstate NY Alliance will produce a proof of concept model for national scale-up with measurable outcomes for varying populations of at-risk high school students.

The Alliance will strive to translate and further develop the LINKS framework within the context of each of the varied institutional environments, resulting in a more robust model that draws from the strengths of all of the schools with a core focus and range of applications. The project will create a diverse collegial community dedicated to bridging the gap between P-12 and higher education learning environments. It also will implement a clearly-articulated and successful collaboration among the four institutions that will provide multiple opportunities to share best practices, engage in cross-institution dialog, and leverage each member's strengths to enhance and further develop the LINKS framework.
DATE: -
TEAM MEMBERS: Beth Olivares Laurel Sanger Jason Adsit Kathryn Dimiduk Wendi Heinzelman
resource project Public Programs
Chemistry is an important and widely relevant field of science. However, when compared with other STEM content areas, chemistry is under-represented in U.S. science museums and other informal educational environments. This project will build, and build knowledge about, innovative approaches to delivering informal science learning activities in chemistry. The project will not only increase public interest and understanding of chemistry but also increase public perception of chemistry's relevance and increase the public's self-efficacy with respect to chemistry. This project outcomes will include a guide for practitioners along with activity materials that will be packaged into a kit, distributed, and replicated for use by informal science educators, chemists, and chemistry students at 250 sites across the U.S. The project team will reach out to organizations that serve diverse audiences and diverse geographic locations, including organizations in rural and inner-city areas. The kits will provide guidance on engaging girls, people with various abilities, Spanish speakers, and other diverse audiences, and include materials in Spanish. Written guides, training videos, and training slides will be included to support training in science communication in general, as well as chemistry in particular. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.

This project will take an innovative approach to develop informal educational activities and materials about chemistry. Rather than starting with content goals, the project will start with a theoretical framework drawn from research about affecting attitudes about science related to interest, relevance, and self-efficacy. A design-based research approach (DBR) will be used to apply that framework to the development of hands-on educational activities about chemistry, while also testing and modifying the framework itself. (DBR blends empirical educational research with the theory-driven design of learning environments.) Existing or new educational activities that appear to embody key characteristics defined in the framework will be tested with public audiences for their impact on visitors. Researchers and educators will determine how different characteristics of the educational activities defined in the framework affect the outcomes. The activities will be modified and tested iteratively until the investigators achieve close alignment between framework and impacts.. The project team will continue the design-based research approach both to examine groups of activities in which synergies can have impacts beyond single interactions as well as to examine varied ways of training facilitators who can also significantly affect outcomes. In this way, the project will generate knowledge about how kits of hands-on informal learning activities can stimulate attitudes of interest, relevance, and self-efficacy with respect to the neglected field of chemistry. The project teams will broadly disseminate project outcomes within the educational research, science and informal Science, Technology, Engineering and Mathematics (STEM) education communities. While this project will focus on chemistry, the strategies it will develop and test through a design-based research process will provide valuable insight into effective approaches for informal STEM education more broadly.
DATE: -
resource project Public Programs
Many communities across the country are developing "maker spaces," environments that combine physical fabrication equipment, social communities of people working together, and educational activities for learning how to design and create objects. Increasingly, maker spaces and maker technologies are being designed to provide extended learning opportunities for school-aged young people. Unfortunately, few youth from under-represented populations have had the opportunity to participate in these maker spaces, and many communities do not have the resources to establish facilities dedicated to making activities. This project, a collaboration of faculty at California State University, San Marcos and San Diego County Office of Education, the Vista Unified School District, and the San Diego Fab Lab, is a feasibility study that will work to address these needs by implementing and evaluating a pilot Mobile Making program in an underserved youth population. It will bring Making to four after-school programs in underserved communities in San Diego by using a van to take both equipment and undergraduate student mentors to program sites. At these sites, between 50% and 90% of the students are Hispanic or Latino and between 40% and 90% are eligible for free or reduced price lunch. The project employs a research-based approach to the design and implementation of the Mobile Making program, coupled with an evidenced-based plan for developing a model for future dissemination. Project objectives are: increasing the participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life; identifying and overcoming challenges associated with a Mobile Making program; developing a model for implementing and assessing Mobile Making in underserved communities; and disseminating materials and guides for practitioners. Development will be guided by five research-based principles for design of out-of-school time programs in underserved communities: access to resources; ethnically diverse near-peer leaders; authentic activities; legitimacy within the community; and ongoing input from participants. To inform program development and implementation, including continuous monitoring and adjustment throughout the two-year initiative, the evaluation component will use a mixed methods approach to study outcomes with respect to the students, their parents and the undergraduate mentors. Future work will apply the lessons learned in the project to guide implementations and study the model's applicability in other informal education settings. The dissemination plan will include publication of project findings, activities, practitioner's guides, and the model for implementing making programs in underserved communities.
DATE: -
TEAM MEMBERS: Edward Price Charles de Leone
resource project Public Programs
The University of Texas at El Paso will conduct a research project that implements and documents the impact of co-generative dialogues on youth learning and youth-scientist interactions as part of a STEM research program (i.e., Work with A Scientist Program). Co-generative dialogues seek to specifically assist with communication and understanding among collaborators. Over four years, 108 11th grade youth from a predominantly (90%) Hispanic high school will conduct STEM research with twelve scientists/engineers (e.g., chemist, civil engineer, geologist, biologist) and undergraduate/graduate students as part of 7 month-long after school program, including bi-weekly Saturday activities for 5 months followed by an intensive month-long, self-directed research project in the summer. Youth will be randomly assigned to experimental groups that include the co-generative dialogue treatment and control groups without the intervention. The scientists and their STEM undergraduate/graduate students will participate in both experimental and control groups, with different youth. Youth will receive high school credit to encourage participation and retention. The PI team hypothesizes that co-generative dialogues will result in improved learning, communication, and research experiences for both youth and scientists. Educational researchers will conduct co-generative dialogues, observations, interviews, and surveys using validated instruments to address the following research goals: (1) To investigate the impact of the treatment (co-generative dialogues) on youth knowledge, attitudes, perceptions of their experience, and their relationships with the scientists; (2) To investigate the impact of the treatment on scientists and graduate students; and (3) To identify critical components of the treatment that affect youth-scientist interactions. It is anticipated that, in addition to providing in-depth STEM research experiences for 108 youth from underrepresented groups at a critical time in their lives, the project will result in widely applicable understandings of how pedagogical approaches affect both youth learning and scientist experiences. The project also seeks to bridge learning environments: informal, formal, university and digital.
DATE: -
TEAM MEMBERS: Pei-Ling Hsu Elena Izquierdo