Skip to main content

Community Repository Search Results

resource research Media and Technology
Participants in this study reported a variety of resources used in the past to learn to code in Apex, including online tutorials, one-day classes sponsored by Salesforce, and meet-up groups focused on learning. They reported various difficulties in learning through these resources, including what they viewed as the gendered nature of classes where the men already seemed to know how to code—which set a fast pace for the class, difficulty in knowing “where to start” in their learning, and a lack of time to practice learning due to work and family responsibilities. The Coaching and Learning Group
DATE:
resource project Media and Technology
This project tackles the urgent needs of the nation to engage people of all ages in computational thinking and help them learn basic computer science concepts with a unique and innovative approach of structured in-game computer program coding. Researchers will explore the design and development of a 3D puzzle-based game, called May's Journey, in which players solve an environmental maze by using the game's pseudo code to manipulate game objects. The game is designed to teach introductory but foundational concepts of computer programming including abstraction, modularity, reusability, and debugging by focusing players on logic and concepts while asking them to type simple instructions in a simplified programming language designed for novices. The game design in this project differs from today's block-based programming learning approaches that are often too far from actual computer code, and also differs from professional programming languages which are too complex for novices. The game and its embedded programming language learning are designed to be responsive to the progress of the learner throughout the game, transitioning from pseudo code to the embedded programming language itself. Error messages for debugging are also designed to be adaptive to players' behavior in the game. Using extensive log data collected from people playing the game, researchers can study how people learn computer programming. Such knowledge can advance understanding of the learning processes in computer programming education. Additionally, this work emphasizes the use of games as informal learning environments as they are accessible and fun, drawing attention and retention of many learners of different age groups with the potential to change attitudes towards computer programming across different populations. This project is co-funded by the STEM + Computing (STEM+C) program that supports research and development to understand the integration of computing and computational thinking in STEM learning, and the Advancing Informal STEM Learning (AISL) program that funds innovative research, approaches and resources for use in a variety of settings with its overall strategy to enhance learning in informal environments.

The project's formative and summative evaluation methods, including surveys, expert reviews of learners' computer code developed in the game, and interviews, are used to gauge learners' engagement as well as learning. In exploring learning, researchers aim to understand how players build implicit computer science knowledge through gameplay and how that gameplay relates to their performance on external transfer tasks. The project will answer the following three research questions: (1) Can observers reliably detect and label patterns of gameplay that provide evidence of learning or misconceptions regarding the four computer science constructs - abstraction, modularity, debugging and semantics - that learners exhibit playing May's Journey? (2) How does learner's implicit knowledge of these computer science constructs change over time and do those patterns vary by gender and prior programming experiences? (3) Is there a strong correlation between implicit learning measures and transfer of CS concepts: modularity, debugging, semantics, and abstraction? How do these correlations vary across elements of the game? This work will result in several outcomes: game design metaphors tested for their learning and engagement value that can be abstracted and embedded in different games. This project will also contribute patterns and an understanding of how people learn and engage in problem solving using concepts of abstraction, modularity, debugging and semantics. These outcomes will lead to advancement in knowledge in the learning sciences as well as the design of educational games that enrich STEM learning, particularly in programming and computational thinking. In addition, this project will engage female participants and underserved populations through partnering organizations including National Girls Collaborative project.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Magy Seif El-Nasr
resource project Public Programs
This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The project will research the educational impact of social robots in informal learning environments, with applications to how social robots can improve participation and engagement of middle-school girls in out-of-school computer science programs in under-resourced rural and urban areas. The use of robots to improve STEM outcomes has focused on having learners program robots as tools to accomplish tasks (e.g., play soccer). An alternate approach views robots as social actors that can respond intelligently to users. By designing a programmable robot with social characteristics, the project aims to create a culturally-responsive curriculum for Latina, African American, and Native American girls who have been excluded by approaches that separate technical skill and social interaction. The knowledge produced by this project related to the use and benefits of social programmable robots has the potential to impact the many after-school and weekend programs that attempt to engage learners in STEM ideas using programmable robot curricula.

The project robot, named Cozmo, will be programmed using a visual programming language and will convey emotion with facial expressions, sounds, and movements. Middle school girls will engage in programming activities, collaborative reflection, and interact with college women mentors trained to facilitate the course. The project will investigate whether the socially expressive Cozmo improves computer science outcomes such as attitudes, self-efficacy, and knowledge among the middle school female participants differently than the non-social version. The project will also investigate whether adding rapport-building dialogue to Cozmo enhances these outcomes (e.g., when a learner succeeds in getting Cozmo to move, Cozmo can celebrate, saying "I can move! You're amazing!"). These questions will be examined research conducted with participants in multi-session after-school courses facilitated by Girl Scout troops in Arizona. The project will disseminate project research and resources widely by sharing research findings in educational and learning science journals; creating a website with open source code for programming social robots; and making project curriculum and related guidelines available to Girl Scouts and other educational programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Amy Ogan Erin Walker Kimberly Scott
resource research Games, Simulations, and Interactives
It is a well-documented fact that women and minorities are currently underrepresented in STEM higher education degree programs and careers. As an outreach measure to these populations, we established the Hexacago Health Academy (HHA), an ongoing summer program. Structured as an informal learning environment with a strong youth initiated mentoring component, HHA uses game-based learning as both a means of health education and stimulating interest in careers in medicine among adolescents from underrepresented minority populations. In this article, we describe the 2015 session of the Hexacago
DATE:
TEAM MEMBERS: Megan Macklin Patrick Jagoda Ian B. Jones Melissa Gilliam
resource project Higher Education Programs
The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.

While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE: -
TEAM MEMBERS: Amy Tuininga Ashwani Vasishth Pankaj Lai
resource project Community Outreach Programs
The University of California, Irvine will lead this Design and Development Launch Pilot to engage with collaborators from the Orange County CA STEM Initiative, the Orange County CA Department of Education, the Orange County CA Workforce Investment Board, the Jamboree Affordable Housing Communities, the Orangewood Foundation for Foster and Community Youth Services, OCTANE-Technology Incubator, Project Tomorrow and Growth Section. This project was created in response to the Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program solicitation (NSF 16-544). The INCLUDES program is a comprehensive national initiative designed to enhance U.S. leadership in science, technology, engineering and mathematics (STEM) discoveries and innovations focused on NSF's commitment to diversity, inclusion, and broadening participation in these fields. The INCLUDES Design and Development Launch Pilots represent bold, innovative ways for solving a broadening participation challenge in STEM.

The full participation of all of America's STEM talent is critical to the advancement of science and engineering for national security, health and prosperity. Our nation is advancing knowledge and practices to address the computing technology education practices for recruiting, better educating, retaining and graduating a productive STEM workforce. However women who are members of underrepresented minority groups, with low socioeconomic status, historically underperform in STEM and specifically in computing technology. This project, NSF INCLUDES: Supporting Women Advancing Through Technology, has the potential to significantly advance a collaborative approach by a group of organizations to improve the success of poor, underrepresented minority women who are learning computing technology and transitioning to the STEM workforce.

The project will demonstrate the outcomes of computer science training for women, particular disenfranchised and underrepresented minority women that may be exiting foster youth services, living in low income housing, and/or having been denied access to programs particularly in technology due to their socioeconomic status. Partnering organizations will design, develop and launch a short-term, intensive training opportunity in computer science for women ages 16 to 34 who are unemployed or underemployed, and who desire to engage in upward career mobility. The program will include a replicable, custom curriculum and an educational approach that will be scalable. A boot camp will teach the fundamentals of Ruby on Rails, HTML, CSS, SQL, JavaScript, and AngularJS, and prepare participants for a career in web development while enabling them to keep their day jobs and have childcare provided. Educating a randomized sample treatment group of up to 150 women in this launch pilot, the partners will also offer internships and/or job shadows, where participants gain client experience, learn from more experienced developers, and continue to build their portfolios. All of the women in the program will receive information, coaching and exposure to college and career opportunities. Job placement in STEM careers is the outcome goal of this design and development launch pilot.
DATE: -
TEAM MEMBERS: Linda Christopher Christine Olmstead
resource project Media and Technology
Women continue to be underrepresented in computer science professions. In 2015, while 57% of professional occupations in the U.S. were held by women, only 25% of computing occupations were held by women. Furthermore, the share of computer science degrees going to women is smaller than any STEM field, even though technology careers are the most promising in terms of salaries and future growth. Research suggests that issues contributing to this lack of computer science participation begin early and involve complex social and environmental factors, including girls' perception that they do not belong in computer science classes or careers. Computer science instruction often alienates girls with irrelevant curriculum; non-collaborative pedagogies; a lack of opportunities to take risks or make mistakes; and a heavy reliance on lecture instead of hands-on, project-based learning. Computer science experiences that employ research-based gender equitable best practices, particularly role modeling, can help diminish the gender gap in participation. In response to this challenge, Twin Cities PBS (TPT), the National Girls Collaborative (NGC) and Code.org will lead Code: SciGirls! Media for Engaging Girls in Computing Pathways, a three-year project designed to engage 8-13 year-old girls in coding through transmedia programming which inspires and prepares them for future computer science studies and career paths. The project includes five new PBS SciGirls episodes featuring girls and female coding professionals using coding to solve real problems; a new interactive PBSKids.org game that allows children to develop coding skills; nationwide outreach programming, including professional development for informal educators and female coding professionals to facilitate activities for girls and families in diverse STEM learning environments; a research study that will advance understanding of how the transmedia components build girls' motivation to pursue additional coding experiences; and a third-party summative evaluation.

Code: SciGirls! will foster greater awareness of and engagement in computer science studies and career paths for girls. The PBS SciGirls episodes will feature girls and female computer science professionals using coding to solve real-world challenges. The project's transmedia component will leverage the television content into the online space in which much of 21st century learning takes place. The new interactive PBSKids.org game will use a narrative framework to help children develop coding skills. Drawing on narrative transportation theory and character identification theory, TPT will commission two exploratory knowledge-building studies to investigate: To what extent and how do the narrative formats of the Code: SciGirls! online media affect girls' interest, beliefs, and behavioral intent towards coding and code-related careers? The studies aim to advance understanding of how media builds girls' motivation to pursue computer science experiences, a skill set critical to building tomorrow's workforce. The project team will also raise educators' awareness about the importance of gender equitable computer science instruction, and empower them with best practices to welcome, prepare and retain girls in coding. The Code: SciGirls! Activity Guide will provide educators with a relevant resource for engaging aspiring computer scientists. The new media and guide will also reside on PBSLearningMedia.org, reaching 1.2 million teachers, and will be shared with thousands of educators across the SciGirls CONNECT and National Girls Collaborative networks. The new episodes are anticipated to reach 92% of U.S. TV households via PBS, and the game at PBSKids.org will introduce millions of children to coding. The summative evaluation will examine the reach and impact of the episodes, game and new activities. PIs will share research findings and project resources at national conferences and will submit to relevant publications. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Rita Karl Karen Peterson Rebecca Osborne Barbara Flagg
resource project Public Programs
Non-Technical

Lack of diversity in science and engineering education has contributed to significant inequality in a workforce that is responsible for addressing today's grand challenges. Broadening participation in these fields will promote the progress of science and advance national health, prosperity and welfare, as well as secure the national defense; however, students from underrepresented groups, including women, report different experiences than the majority of students, even within the same fields. These distinctions are not caused by the students' ability, but rather by insufficient aspiration, confidence, mentorship, instructional methods, and connection and relevance to their cultural identity. The long-term vision of this project is to amplify the impact of a successful broadening participation model at the University of Maine, the Stormwater Research Management Team (SMART). This program trains students and mentors in using science and engineering skills and technology to research water quality in their local watershed. Students engage in numerous science and technology fields: engineering design, data acquisition, analysis and visualization, chemistry, environmental science, biology, and information technology. Students also connect with a diversity of professionals in water and engineering in government, private firms and non-profits. SMART has augmented the traditional science and engineering classroom by engaging students in guided mentored apprenticeships that address community problems.

Technical

This pilot project will form a collaborative and define a strategic plan for scale-up to a national alliance to increase the long-term success rate of underrepresented minority students in science, engineering, and related fields. The collaborative of multiple and varied organizations will align to collectively contribute time and resources to a pre-college educational pathway. There are countless isolated programs that offer short-term interventions for underrepresented and minority students; however, there is lack of organizational coordination for aligning current program offerings, sharing best practices, research results or program outcomes along the education to workforce pathway. The collaborative activities will focus on the transition grades (e.g., 4-5, 8, and high school) and emphasize relationships among skills, confidence, culture and future careers. Collaborative partners will establish a centralized infrastructure in each location to coordinate recruiting of invested community leaders, educators, and parents, around a common agenda by designing, deploying and continually assessing a stormwater-themed project that addresses their location and demographic specific needs. This collaborative community will consist of higher education faculty and students, K-12 students, their caregivers, mentors, educators, stormwater districts, state and national environmental protection agencies, departments of education, and other for-profit and non-profit organizations. The collaborative will address the need for research on mechanisms for change, collaboration, and negotiation regarding the greater participation of under-represented groups in the science and technology workforce.
DATE: -
TEAM MEMBERS: Mohamed Musavi Venkat Bhethanabotla Cary James Vemitra White Lola Brown
resource project Public Programs
The Mississippi Alliance for Women in Computing (MAWC) project will identify factors that influence and motivate female students and female African American students in Mississippi to enroll and persist in an undergraduate engineering- or science-based computing major. There is a particular need for programming that is inclusive of women and women of color who are from the southern region of the United States. These students typically have less access to extracurricular activities that encourage computing, and are less likely to visualize themselves in a computing major or career. This proposed research is to help girls to know that computer science exists and what jobs in computer science are available with a degree in computer science. A rich environment exists in Mississippi for an alliance focused on building co-curricular and mentorship opportunities. A scalable pipeline model, expandable to a Southern Alliance for Women in Computing (SAWC), will be developed with three major objectives: to attract women and women of color to computing, to improve retention rates of women in undergraduate computing majors, and to help postsecondary women make the transition to the computing workforce. Activities to support these objectives include: scaling the National Center for Women and Information Technology Aspirations in Computing award program in Mississippi, expanding scholarships for Aspirations winners, expanding student-led computing outreach programs, establishing a Mississippi Black Girls Code chapter, informing and collaborating with the Computer Science for Mississippi initiative, creating a summer bridge and living-learning community for women in computing majors, and increasing professional development opportunities for women in computing through conferences, lunch and learn meetings, job shadowing, and internships.

The project will analyze whether the co-curricular activities of MAWC lead to computing self-efficacy and ultimately female students selecting to pursue and persist in computing majors and careers. In order to understand student participation and efficacy changes, data collection for this research will be through demographic and background surveys administered to women entering an undergraduate engineering- or science-based computing major at a university in Mississippi and student surveys and evaluations in MAWC-sponsored programs. Using discriminate analysis methods, specific research questions to be addressed are: 1) Which pre-collegiate experiences influenced them to enroll, 2) Which stakeholders influenced these girls in their decision-making process, and 3) What programs are effective in impacting their persistence in the major. Predictor variables for each respective research question are: pre-collegiate experiences, stakeholders, and programs. Outcome variables are: (a) a female undergraduate student with no involvement with MAWC programming, (b) MAWC activity participant, or (c) a MAWC participant having graduated with a bachelor?s degree in a STEM major. Results will complement published longitudinal research on the gendered and raced dimensions of computing literacy acquisition in Mississippi as well as research on effective CS role model programming.
DATE: -
TEAM MEMBERS: Sarah Lee Vemitra White
resource project Media and Technology
This project formed a partnership between a research team with experience in computer science (CS) education and learning sciences research and a newly fashioned practitioner team focused on building a grassroots, informal, volunteer group created to help women help themselves and others learn to write computer code. This research-practitioner partnership had a two-pronged focus, first on improving the program offered to learners through making adjustments based on research findings, and second on investigating the phenomenon of how women in the workforce informally learn CS skills that enable them to rewrite their career paths to contribute to what we know from research. The context of the study was situated in the virtual community that has formed around the phenomenally successful Salesforce Customer Relationship Management software platform.

This Exploratory Pathways project aimed to fill a gap in the research; we know little about the phenomenon of adult women in the workforce who are patching together resources to learn CS skills with a goal of job enhancement or job change. This project took an ethnographic approach to studying the informal learning (both through online, written resources and through sharing of knowledge with others) of the women involved in a 10-week, virtual Women’s Coaching and Learning group. The organization of this group consisted of learners—novice coders in the Apex language that is used on the Salesforce software platform, of coaches—more knowledgeable coders, and of a steering committee that ran the group and created the informal curriculum followed in the 10-week course.

Our overarching research question in this study was: In what ways are informal CS learning opportunities being used and created by adult women, what are their experiences with those opportunities, and how does this suggest ways to enhance those opportunities in the future to increase effectiveness in broadening access to and engagement in informal CS learning experiences for women?

We broke the question down into a number of sub questions, including:


Sociocultural context: What past gendered interactions do women report that discouraged (or encouraged) them from learning to code? What do interactions look like in female-only coaching and learning groups? In what ways does a coaching and learning group support persistence? What social barriers and supports outside the group affect persistence?
Personal context: What are the characteristics and backgrounds of female administrators who seek out resources to teach themselves to code? What are the motivations for these women to teach themselves to code? What motivates them to seek out and join all-women coding groups?
Physical context: How are women learning to code both through written resources and in virtual, informal coaching and learning classes? What are the conceptual barriers and supports that they encounter, and what works for women in these classes to overcome barriers? What conceptual barriers and supports affect persistence?
Persistence and identity: In what ways does participating in a learning group with female coaching motivate (or not) women to persist in learning to code? How do their goals or reasons for learning to code change through their participation? How does their identity as a “coder” change or shift as they participate?


Our findings for these subquestions are summarized in the “project products” linked to below.
DATE: -
TEAM MEMBERS: Louise Ann ("Lou Ann") Lyon Jill Denner