Skip to main content

Community Repository Search Results

resource project Public Programs
This collaborative project will facilitate rural community education on climate impacts. The Carnegie Natural History Museum and the University of Pittsburgh will work together to form a network of interested community members in Mercer County and Powdermill Nature Reserve in western Pennsylvania to explore the impacts of climate and how its effect could be mitigated or accommodated. The project is has three related ideas: (1) museums hold valuable resources for understanding environmental change, (2) museums are not serving rural audiences well, and (3) complex socio-scientific environmental topics are deeply connected to social decision making in rural communities. This project will bring an inclusive approach to the discussion of socio-scientific issues in rural Western PA, through building relationships between local public audiences, STEM professionals, and informal learning specialists, creating opportunities for co-development of resources and building organizational capacity. The overarching goals of the project are to explore how museums can better serve rural stakeholders and increase the capacity for science-based conversations about human-caused climate impacts.

This project involves a cross-disciplinary team with Carnegie Museum of Natural History providing expertise in interpretation and ecological science, the University of Pittsburgh Center for Learning in Out of School Environments (UPCLOSE) providing expertise in learning research, and rural Hubs centered at Powdermill Nature Reserve (PNR) and the Mercer County Conservation District providing expertise in environmental education, conservation, and engagement with rural communities. The Hubs will coordinate professional development workshops, collaborative design sessions, and community gatherings to bring local stakeholders together to examine and adapt existing resources, including environmental science data and climate education tools, to local issues. These activities will be structured through a Research Practice Partnership. Each will have its own unique mix of geography, demographics, resources, and challenges.

The Research questions are: 1. How can the project effectively support the creation of socially safe spaces for rural Western PA communities to have science-based discussions around climate impacts? 2. How does work with rural partners influence the development of the museum's Center for Climate Studies and its mission to offer programs designed to support public engagement?

3. In what ways have museums been able to support learning about climate topics in rural communities? Data will be gathered from interviews and case studies. There will be two longitudinal studies of local network change and museum change. A survey will also be done to assess the impact of the project on the public. Protocols will be developed in collaboration with the Hubs.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Lauren Giarratani Nicole Heller Kevin Crowley
resource project Public Programs
This project will focus on addressing the challenges faced by rural youth with a particular emphasis on those youth who are English Language Learners. The project will provide informal education via libraries and librarians which can provide unique opportunities for rural youth and communities. Building on several years of research and experimentation, this project will augment the formal education sector, as well. The settings for the project are 12 rural school districts in largely Latinx communities. The project partners are the Space Science Institute, the American Library Association (ALA), the Institute for Learning Innovation and the Twin Cities Public Television. Expertise from the Latinx community will play a significant part in the project. The project will engage learners from diverse backgrounds, ages, and interests in science through a coordinated and tested strategy incorporating three Learning Pathways (i.e., Science Learning Spaces, Programs, and Science Kits) in a public library environment. The results should yield a model for Nationwide application.

The main goals are: 1) to establish learning pathways to engage rural communities through exhibit host libraries and (2) to increase art-rich STEM learning opportunities for rural communities through libraries and their support systems. Building on an established training model, the project will introduce library staff to the STEAM content of the exhibits and guide them in developing their own STEAM Learning Pathways. SciGirls digital media, hands-on activities, family resources, and a training network will expand the depth and reach of the project. The project draws on existing professional infrastructure to increase library staff capacity through ALA and the Institute's established community of practice. The researchers will study the efficacy of each pathway, alone and in tandem, on participant's interest development and persistence. The research will use a mixed-methods design-based approach that involves questionnaires, interviews and case studies.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Keliann LaConte Paul Dusenbery Kristin Pederson Debbie Siegel
resource project Public Programs
Libraries can provide unique opportunities for rural youth and communities. Phase III of the STAR Library Network will be a collaboration with 12 rural school districts in largely Latinx communities to address the challenges faced by rural youth, particularly English Language Learners. The project will use a coordinated and tested strategy to establish three learning pathways in public libraries: science learning spaces with exhibits, library programs, and science kits. These resources will provide learners with art-rich STEM learning opportunities.

Partners

Project partners include the Space Science Institute, the American Library Association (ALA), the Institute for Learning Innovation, and Twin Cities Public Television. The project will rely significantly on expertise from the Latinx community.

Project Plan

Building on an established librarian training model, the project will introduce library staff to the STEAM content and guide them in developing their own STEAM Learning Pathways. The project will draw on existing professional infrastructure from the ALA and the Institute for Learning Innovation’s established community of practice. SciGirls digital media, hands-on activities, family resources, and a training network will expand the depth and reach of the project.

The Research

The research team will study the efficacy of each pathway, alone and in tandem, on participant’s interest development and persistence. The research will use a mixed-methods design-based approach that involves questionnaires, interviews, and case studies. The results should yield a model for nationwide application and contribute insights for the formal education sector.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Lainie Castle
resource project Exhibitions
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. Informal STEM educational activities have proliferated widely in the US over the last 20 years. Additional research will further validate the long-term benefits of this mode of learning. Thus, elaborating the multitude of variables in informal learning and how those variables can be used for individual learning is yet to be defined for the circumstances of the learners. Thus, the primary objective of this work is to produce robust and detailed evidence to help shape both practice and policy for informal STEM learning in a broad array of common circumstances such as rural, urban, varying economic situations, and unique characteristics and cultures of citizen groups. Rather than pursuing a universal model of informal learning, the principal investigator will develop a series of comprehensive models that will support learning in informal environments for various demographic groups. The research will undertake a longitudinal mixed-methods approach of Out of School Time/informal STEM experiences over a five-year time span of data collection for youth ages 9-19 in urban, suburban, town, and rural communities. The evidence base will include data on youth experiences of informal STEM, factors that exert an influence on participation in informal STEM, the impact of participation on choices about educational pathways and careers, and preferences for particular types of learning activities. The quantitative data will include youth surveys, program details (e.g. duration of program, length of each program session, youth/facilitator ratio, etc.), and demographics. The qualitative data will include on-site informal interviews with youth and facilitators, and program documentation. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The three-year project, Montana Models: Connecting Local and Disciplinary Practices through University-Community Partnerships, focuses on creating, implementing, and studying several learning outcomes associated with youth engagement in mathematical modeling contexts. The project builds on existing partnerships between the state's two research universities and Montana 4-H to target outreach to rural youth and bring them into a network of people who can inspire, support, and sustain STEM learning. Middle school and high school students from rural communities will be invited to a university campus for a residential modeling-based summer program l focused on mathematics and mathematical modeling. Activities at the summer program are designed to engage them in problems relevant to their own backgrounds and experiences and to honor their local funds of knowledge. The primary goal of Montana Models is to use mathematical modeling as a mechanism for bringing everyday mathematical practices already present in rural communities into contact with disciplinary practices. The project focuses on the following research questions: (1) What are the everyday mathematical practices in Montana communities? (2) How can everyday mathematical practices be leveraged and brought into contact with disciplinary practices in service of mathematizing meaningful questions within the community? (3) How do youth identify and get identified with respect to mathematics and with respect to their role in the world? (4) How does participation in project activities affect participants' knowledge of mathematical practices and content? The project uses social design experimentation, a hybrid research methodology which combines the traditions of design-based research with forms of inquiry that involve collaboration among participants, researchers, and other stakeholders, such as critical ethnography. Data sources include field notes from ethnographic observations, interviews, videos of students engaging in modeling activities, artifacts that show their mathematical work, and results from the Attitudes Towards Mathematics Inventory. Through its collaboration with 4-H, Montana Models targets outreach to rural youth across the state, especially those from groups that are typically underrepresented in STEM fields. The project is poised to impact ways in which formal and informal educators understand the knowledge bases that are already present in rural communities and how those bases may inform, support, and sustain STEM learning. Findings and deliverables will be disseminated through a public-facing website and through the 4-H infrastructure. This infrastructure includes Montana 4-H's Clover Communication Contest that will allow participating youth to showcase their projects. Research findings will be shared through local and national conferences and peer-reviewed publications. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mary Carlson Elizabeth Burroughs Frederick Peck Katharine Banner david thomas
resource project Media and Technology
This project develops and examines place-based learning using mobile augmented reality experiences for rural families where museums and science centers are scarce yet where natural resources are rich with outdoor trails, parks, and forestlands. The collaborative research team, with members from rural libraries, outdoor learning centers, learning scientists at Penn State University, and rural communities in Pennsylvania, will develop augmented reality and mobile learning resources for families and children aged from 4 to 12. The goal is to help people see what is not visible in real-time in order to learn about life and earth sciences based on local watersheds, trees, and seasonal cycles that are familiar and relevant to rural communities. To accomplish this goal, the project team will create scientifically meaningful experiences for rural families and children in their out-of-school time through three iterations of research and design. Although there is evidence that augmented reality can support learning, little empirical research has been conducted to determine what makes one type of augmented learning experience more effective than others in outdoor learning spaces. This project will produce research findings on the utility of augmented reality for science learning with families and youths outdoors. This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants

Through a four-year design-based research study, researchers will investigate three research questions. (1) How can outdoor learning experiences be enhanced with augmented reality and digital resources in ways that make science more visible and interesting?; (2) How do different forms of augmentations on trails and in gardens support science learning? 3) What social roles do children and parents play in supporting each other's science learning and connections to rural communities? Data collection includes video-recordings of children and families in the outdoors, learning analytics of people's behavior, and interviews with rural families. The project's research design will allow for the development of theory, which supports rural families learning science within and about their communities. At the end of the project, the team will offer generalizable design principles for technologically-enhanced informal learning for outdoor displays, gardens, and trails.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Heather Toomey Zimmerman Susan Land
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This specific project will advance new knowledge about the nature of and functions for rural libraries as informal STEM learning environments. Research will identify the social contexts and relational capabilities of libraries to acquire new scientific knowledge that exists externally and to integrate it into community knowledge-building and forums. The research outcomes should lead to actionable strategies for library and science communication practitioners about who and how to influence public engagement in citizen science drought monitoring. Furthermore, collaborations with these rural libraries will lead to new resources for rural communities and informal STEM education. This project will focus on the design, development, and evaluation of informal science education programs and educational media for use in rural libraries in drought prone areas of the Great Plains. The target audiences include public librarians in rural communities of Oklahoma, Nebraska, and Colorado, as well as the general public (adults and children) they serve. The project goals are to leverage the professional skills and community knowledge of rural librarians to support local drought monitoring networks. The model prepares librarians to introduce citizen science processes and practices within the context of community dialogue and deliberation about drought. In collaboration with partners at the Community Collaborative for Rain, Hail, and Snow (CoCoRaHS), and the National Drought Mitigation Center (NDMC), the project will increase public participation in citizen science and improve the communication of science-based knowledge about drought. The project deliverables include: (1) a professional development workshop series for rural librarians, (2) a drought infographic booklet and poster series, and (3) co-designed library programs for rural public audiences. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Project Website- http://www.spottyrain.org/
DATE: -
TEAM MEMBERS: Nicole Colston Tutaleni Asino
resource project Informal/Formal Connections
Parents exert a strong influence on the development of foundational science, technology, engineering, and mathematical (STEM) skills in early childhood. This influence occurs, in large part, through playful parent-child interactions and conversations that expose children to mathematical and spatial concepts in interesting and useful ways. For example, parents of preschool children are often encouraged to use puzzles, board games, and construction activities to foster children's spatial thinking and early math skills. However, mastery-oriented toys like these typically elicit highly structured interactions, with parents directing children to follow explicit step-by-step instructions and game rules. Although this kind of parent-directed play can build content knowledge in STEM, it does little to encourage the kind of intrinsically-motivated discovery, generative collaboration, and creative problem-solving skills that support STEM education and attainment. This research in service to practice project seeks to understand how parents can play with their preschool children in ways that build children's STEM skills while also supporting children's social-emotional skills. As such, this research has the potential for advancing knowledge on effective strategies for enriching informal learning opportunities in under-resourced and sparsely populated communities where access to children's museums and other informal learning institutions is limited. Over a period of three years, approximately 135 children and parents from a rural Appalachian community are expected to participate in this research, which is organized into three phases. During Phase 1, human-centered design processes will be used to develop and refine play guides and parent scaffolds that promote productive pretend play, which is characterized by joyful and creative problem-solving and rich parent/child conversations featuring mathematical and spatial concepts and reasoning. In Phase 2, measures will be developed and validated to operationalize and code this kind of productive parent-child play and play guides will be tested and refined in a local children's museum. In the final phase, a formal field test will investigate the feasibility and acceptability of outreach programming involving the use of play guides over time. Pre-, mid-, and post-intervention measures will estimate program impact on child STEM and social-emotional skill acquisition, relative to a comparison group. An expected outcome of the project will be research-based educational materials that illustrate and support pretend play in ways that generate spatial and mathematical thinking and parent/child conversations. These materials will will be made available to families and informal learning practitioners. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Karen Bierman Lynn Liben Meg Small Jessica Menold
resource project Public Programs
This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The project will research the educational impact of social robots in informal learning environments, with applications to how social robots can improve participation and engagement of middle-school girls in out-of-school computer science programs in under-resourced rural and urban areas. The use of robots to improve STEM outcomes has focused on having learners program robots as tools to accomplish tasks (e.g., play soccer). An alternate approach views robots as social actors that can respond intelligently to users. By designing a programmable robot with social characteristics, the project aims to create a culturally-responsive curriculum for Latina, African American, and Native American girls who have been excluded by approaches that separate technical skill and social interaction. The knowledge produced by this project related to the use and benefits of social programmable robots has the potential to impact the many after-school and weekend programs that attempt to engage learners in STEM ideas using programmable robot curricula.

The project robot, named Cozmo, will be programmed using a visual programming language and will convey emotion with facial expressions, sounds, and movements. Middle school girls will engage in programming activities, collaborative reflection, and interact with college women mentors trained to facilitate the course. The project will investigate whether the socially expressive Cozmo improves computer science outcomes such as attitudes, self-efficacy, and knowledge among the middle school female participants differently than the non-social version. The project will also investigate whether adding rapport-building dialogue to Cozmo enhances these outcomes (e.g., when a learner succeeds in getting Cozmo to move, Cozmo can celebrate, saying "I can move! You're amazing!"). These questions will be examined research conducted with participants in multi-session after-school courses facilitated by Girl Scout troops in Arizona. The project will disseminate project research and resources widely by sharing research findings in educational and learning science journals; creating a website with open source code for programming social robots; and making project curriculum and related guidelines available to Girl Scouts and other educational programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Amy Ogan Erin Walker Kimberly Scott
resource project Exhibitions
With snow providing water for about 2 billion people worldwide and playing a major role in the Earth's climate through its high albedo and insulation properties, on-going alterations in global snow resources pose real and extremely expensive societal adaptation/mitigation problems. The project goals are to:


Create opportunities for the public to learn about the vital role that snow plays in climate, water resources, and human lives.
Produce a better understanding of how culture affects informal Science, Technology, Engineering, Mathematics (STEM) learning.


The deliverables include:


An outreach program in Alaska that will visit 33 remote native villages;
A 2,000 square foot traveling exhibition on snow produced by the Oregon Museum of Science and Industry (OMSI) and exhibited at two additional museums during the life of the award;
Learning research, which will examine how the wide variation of cultural relationships to snow impacts learning in museum exhibitions. Each of these components will be evaluated over the course of the project. The travelling exhibition will tour to three museums per year for eight years, with an anticipated cumulative audience of over one million.


The focus on snow will highlight a fascinating yet under-appreciated part of the Earth system. The project aims to educate the public about snow and to produce a more informed and thoughtful public in the face of potential expensive and difficult snow-related societal decisions. Through informative displays, graphics, models, and other material, the project will engage traditionally under-served communities (at Native/remote villages) in Alaska, where a strong cultural connection to snow exists, as well as communities across the U.S. where the connection to snow can range from strong to weak. Across this cultural gradient, the project will explore through oral interviews and surveys the public response to various types and designs of informal science learning (ISL) displays, attempting to isolate and control for the effect of cultural vs. individual response to the materials. Informal learning theory specifies using front-end exploration of individual visitor-content relationships to guide exhibit design. This project's research goal expands that approach to include the effects of cultural engagement with a topic to develop more general tools to guide and improve the design process. The project is led by the University of Alaska Fairbanks (UAF) in collaboration with OMSI researchers from the COSI (Center of Science and Industry), Center for Research and Evaluation (CRE), and evaluators at the Goldstream Group. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Office of Polar Programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Victoria Coats Matthew Sturm Deborah Wasserman
resource project Public Programs
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.

The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Katie Spellman Elena Sparrow Christa Mulder Deb Jones
resource project Public Programs
Cities and communities in the U.S. and around the world are entering a new era of transformational change, in which their inhabitants and the surrounding built and natural environments are increasingly connected by smart technologies, leading to new opportunities for innovation, improved services, and enhanced quality of life. The Smart and Connected Communities (SCC) program supports strongly interdisciplinary, integrative research and research capacity-building activities that will improve understanding of smart and connected communities and lead to discoveries that enable sustainable change to enhance community functioning. This project is a Research Coordination Network (RCN) that focuses on achieving SCC for medium/small size, remote, and rural communities through a polycentric (multiple centers) integrated policy, design, and technology approach. The communities served by the RCN have higher barriers to information, resources, and services than larger urban communities. To reduce this gap, the PIs propose to develop need-based R&D pipelines to select solutions with the highest potential impacts to the communities. Instead of trying to connect under-connected communities to nearby large cities, this proposal aims to develop economic opportunities within the communities themselves. This topic aligns well with the vision of the SCC program, and the proposed RCN consists of a diverse group of researchers, communities, industry, government, and non-profit partners.

This award will support the development of an RCN within the Commonwealth of Virginia which will coordinate multiple partners in developing innovations utilizing smart and connected technologies. The goal of the research coordination network is to enable researchers and citizens to collaborate on research supporting enhanced quality of life for medium, small, and rural communities which frequently lack the communication and other infrastructure available in cities. The research coordination network will be led by the University of Virginia. There are 14 partner organizations including six research center partners in transportation, environment, architecture and urban planning, and engineering and technology; two State and Industry partners (Virginia Municipal League and Virginia Center for Innovative Technology); four community partners representing health services (UVA Center for Telemedicine), small and remote communities (Weldon Cooper Center), neighborhood communities (Charlottesville Neighborhood Development), and urban communities (Thriving Cities); and two national partners which support high speed networking (US-Ignite) and city-university hubs (MetroLab). Examples of research coordination include telemedicine services, transportation services, and user-centric and community-centric utilization and deployment of sensor technologies.
DATE: -
TEAM MEMBERS: Ila Berman T. Donna Chen Karen Rheuban Qian Cai