Skip to main content

Community Repository Search Results

resource project Public Programs
Citizen science refers to partnerships between volunteers and scientists that answer real world questions. The target audiences in this project are middle and high school teachers and their students in a broad range of settings: two urban districts, an inner-ring suburb, and three rural districts. The project utilizes existing citizen science programs as springboards for professional development for teachers during an intensive summer workshop. The project curriculum helps teachers use student participation in citizen science to engage them in the full complement of science practices; from asking questions, to conducting independent research, to sharing findings. Through district professional learning communities (PLCs), teachers work with district and project staff to support and demonstrate project implementation. As students and their teachers engage in project activities, the project team is addressing two key research questions: 1) What is the nature of instructional practices that promote student engagement in the process of science?, and 2) How does this engagement influence student learning, with special attention to the benefits of engaging in research presentations in public, high profile venues? Key contributions of the project are stronger connections between a) ecology-based citizen science programs, STEM curriculum, and students' lives and b) science learning and disciplinary literacy in reading, writing and math.

Research design and analysis are focused on understanding how professional development that involves citizen science and independent investigations influences teachers' classroom practices and student learning. The research utilizes existing instruments to investigate teachers' classroom practices, and student engagement and cognitive activity: the Collaboratives for Excellence in Teacher Preparation and Classroom Observation Protocol, and Inquiring into Science Instruction Observation Protocol. These instruments are used in classroom observations of a stratified sample of classes whose students represent the diversity of the participating districts. Curriculum resources for each citizen science topic, cross-referenced to disciplinary content and practices of the NGSS, include 1) a bibliography (books, web links, relevant research articles); 2) lesson plans and student science journals addressing relevant science content and background on the project; and 3) short videos that help teachers introduce the projects and anchor a digital library to facilitate dissemination. Impacts beyond both the timeframe of the project and the approximately 160 teachers who will participate are supported by curriculum units that address NGSS life science topics, and wide dissemination of these materials in a variety of venues. The evaluation focuses on outcomes of and satisfaction with the summer workshop, classroom incorporation, PLCs, and student learning. It provides formative and summative findings based on qualitative and quantitative instruments, which, like those used for the research, have well-documented reliability and validity. These include the Science Teaching Efficacy Belief Instrument to assess teacher beliefs; the Reformed Teaching Observation Protocol to assess teacher practices; the Standards Assessment Inventory to assess PLC quality; and the Scientific Attitude Inventory to assess student attitudes towards science. Project deliverables include 1) curriculum resources that will support engagement in five existing citizen science projects that incorporate standards-based science content; 2) venues for student research presentations that can be duplicated in other settings; and 3) a compilation of teacher-adapted primary scientific research articles that will provide a model for promoting disciplinary literacy. The project engages 40 teachers per year and their students.
DATE: -
TEAM MEMBERS: Karen Oberhauser Michele Koomen Gillian Roehrig Robert Blair Andrea Lorek Strauss
resource project Public Programs
The project is supported under the NSF Science, Engineering and Education for Sustainability Fellows (SEES Fellows) program, with the goal of helping to enable discoveries needed to inform actions that lead to environmental, energy and societal sustainability while creating the necessary workforce to address these challenges. Sustainability science is an emerging field that addresses the challenges of meeting human needs without harm to the environment, and without sacrificing the ability of future generations to meet their needs. A strong scientific workforce requires individuals educated and trained in interdisciplinary research and thinking, especially in the area of sustainability science. With the SEES Fellowship support, this project will enable a promising early career researcher to establish herself in an independent research career related to sustainability. This project builds upon Resiliency Theory and theories of applied community participation to explore two specific contexts of participatory communication (i.e., processes of collective learning and shared meaning) at the science-society interface: (1) adaptive co-management meetings in New Mexico and Oklahoma, and (2) existing education efforts by drought scientists at two Great Plains universities (Oklahoma State University and University of Nebraska-Lincoln). A mixed methods approach (including, household surveys, oral histories, key informant interviews, and pilot tests) will model community-partnership capacity for drought adaptation in Cimarron (OK) and Union (NM) Counties, and assess the impact of community-academic partnerships on drought literacy and adaptive capacity across the Great Plains. Research in adaptive co-management meetings and interactive media (as contexts for participatory communication between scientists and citizens) provides the context for innovative case study research on the role of public communication about science in community drought adaptation.

Collaboration in case study research with Host Mentor Vadjunec and outreach efforts with Partner Institution Mentor Thomas (UNL) offers a unique opportunity to research the intersections of participatory communication and scientific literacy about the human and climatic drivers of extreme drought. The core research questions addressed by this proposal are, (1) What formal and informal pathways, players, and partnerships exist for participatory communication between scientists and citizens about drought vulnerability and adaptation, (2) How does communication about drought risk and recovery inform the effective diffusion and translation of drought literacy efforts in the Great Plains, and (3) How can we design forums and spaces for sustained interaction (i.e., engagement and collective learning) between stakeholders involved in adaptive drought communication? The project objectives uniquely related to advancing research at the intersections of sustainability science and education are, (1) to identify dimensions of community and partnership capacity for drought education and pathways of adaptive drought communication across scales, (2) to advance dynamic participatory models which assist in the adaptive co-management of water resources in local communities (i.e., increasing citizen-science dialogue, mobilizing community leaders, and fostering the drought education partnerships), and (3) to design and measure the success of drought literacy efforts based on inputs from sustainability scientists at various stages of community decision-making. The adaptive drought co-management workshops in NM and OK provide spaces for stakeholder interaction, which may lead to new approaches, innovations, and learning outcomes for communities in those regions. Outreach partnerships with UNL maximize dissemination of user-friendly and culturally-relevant drought outreach products, including a project website to consolidate scientific knowledge about drought in the Great Plains and interactive media templates. Interdisciplinary collaborations and research findings will inform efforts in academic community partnerships for sustainable practices across many NSF-supported disciplines.
DATE: -
TEAM MEMBERS: Nicole Colston
resource project Public Programs
The State University of New York (SUNY) and the New York Academy of Sciences (NYAS) are collaborating to implement the SUNY/NYAS STEM Mentoring Program, a full scale development project designed to improve the science and math literacy of middle school youth. Building upon lessons learned through the implementation of national initiatives such as NSF's Graduate STEM Fellows in K-12 Education (GK-12) Program, university initiatives such as the UTeach model, and locally-run programs, this project's goals are to: 1) increase access to high quality, hands-on STEM programs in informal environments, 2) improve teaching and outreach skills of scientists in training (graduate and postdoctoral fellows), and 3) test hypotheses around scalable program elements. Together, SUNY and NYAS propose to carry out a comprehensive, systemic science education initiative to recruit graduate students and postdoctoral fellows studying science, technology, engineering, and mathematics (STEM) disciplines at colleges and universities statewide to serve as mentors in afterschool programs. SUNY campuses will partner with a community-based organization (CBO) to place mentors in afterschool programs serving middle school students in high-need, low-resource urban and rural communities. Project deliverables include a three-credit online graduate course for mentor training, six pilot sites, a best practices guide, and a model for national dissemination. The online course will prepare graduate and postdoctoral fellows to spend 12-15 weeks in afterschool programs, introducing students to life science, earth science, mathematics and engineering using curriculum modules that are aligned with the New York State standards. The project design includes three pre-selected sites (College of Nanoscale Science & Engineering at the University of Albany, SUNY Institute of Technology, and SUNY Downstate Medical Center) and three future sites to be selected through a competitive process, each of which will be paired with a CBO to create a locally designed STEM mentoring program. As a result, a minimum of 192 mentors will provide informal STEM education to 2,880 middle school students throughout New York State. The comprehensive, mixed-methods evaluation will address the following questions: 1) Does student participation in an afterschool model of informal education lead to an increase in STEM content knowledge, attitudes, self-efficacy, and interest in pursuing further STEM education and career pathways? 2) Do young scientists who participate in the program develop effective teaching and mentoring skills, and develop interest in teaching or mentoring career options that result in STEM retention? 3) What are the attributes of an effective STEM afterschool program and the elements of local adaptation and innovation that are necessary to achieve a successful scale-up to geographically diverse locations? 4) What is the role of the afterschool model in delivering informal STEM education? This innovative model includes a commitment to scale across the 64 SUNY campuses and 122 Councils of the Girl Scouts of the USA, use an online platform to deliver training, and place scientists-in-training in informal learning environments. It is hypothesized that as a result of greater access to STEM education in an informal setting, participating middle school youth will develop increased levels of STEM content knowledge, self-efficacy, confidence in STEM learning, and interest in STEM careers. Scientist mentors will: 1) gain an understanding of the context and characteristics of informal science education, 2) develop skills in mentoring and interpersonal communication, 3) learn and apply best practices of inquiry instruction, and 4) potentially develop interest in teaching as a viable career option. It is anticipated that the project will add to the research literature in several areas such as the effectiveness of incentives for graduate students; the design of mentor support systems; and the structure of pilot site programs in local communities. Findings and materials from this project will be disseminated through presentations at local, regional, and national conferences, publications in peer-reviewed journals focused on informal science education, and briefings sent to more than 25,000 NYAS members around the world.
DATE: -
resource project Public Programs
Currently, many museums present histories of science and technology, but very few are integrating scientific activity--observation, measurement, experimentation-with the time- and place-specific narratives that characterize history-learning experiences. For the Prairie Science project, Conner Prairie is combining proven science center-style activities, developed by the Science Museum of Minnesota, with family-engagement strategies developed through extensive research and testing with audiences in historical settings. The goal of this integration is to create guest experiences that are rich in both STEM and historical content and encourage family learning. One key deliverable of this project is the Create.Connect gallery, which is currently installed at Conner Prairie. Create.Connect allows the project team to evaluate and research hands-on activities, facilitation strategies and historic settings to understand how these elements combine to encourage family conversations and learning around historical narratives and STEM content. For example, in one exhibit area families can experiment with creating their own efficient wind turbine designs while learning about the innovations of the Flint & Walling windmill manufacturing company from Indiana. The activity is facilitated by a historic interpreter portraying a windmill salesman from 1900. The interpreter not only guides the family though the process of scientific inquiry, but shares his historic perspective on wind power as well. Two other exhibit areas invite hands-on exploration of electrical circuits and forces in motion as they connect to stories from Indiana history. Evaluation and research findings from the Create.Connect exhibit will be used to develop a model that can guide other history institutions that want to incorporate STEM content and thinking into their exhibits and interpretation. By partnering with the Science Museum of Minnesota, we will combine the experience of science center professionals and history museum professionals to find the best practices for incorporating science activities into historic settings. To ensure that this dissemination model is informed from many perspectives, Conner Prairie has invited the participation of four history museums: The Museum of America and the Sea, Mystic, Connecticut; the California State Railroad Museum, Sacramento, California; the Wabash County Historical Society, Wabash, Indiana; and the Oliver H. Kelley Farm, Elk River, Minnesota. Each of the four participants will install history-STEM exhibit components which will be connected to location-specific historic narratives. Drawing on the staff experience and talents of participant museums, this project will develop realistic solutions to an array of anticipated barriers. These issues and the resulting approaches will become part of a stronger, more adaptable dissemination model that will support history museums in creating STEM-based guest experiences.
DATE: -
TEAM MEMBERS: Cathy Ferree
resource project Public Programs
ISE Research: Contextualizing Science Learning and Motivation in Rural and Indigenous Adolescents through Mapping Sustainable Practices is a three-year interdisciplinary research project. Researchers from the University of New Hampshire will investigate impacts of contextualization on science learning, motivation, and positive attitudes toward science of early adolescents from rural and Indigenous populations. The project will yield research findings that can help identify contextualization as a means to engage rural and Indigenous adolescents. The project team uses a systematic approach that incorporates mixed methods of data collection and analysis to learn more about how culture and community (contextualization) impact STEM learning. They hypothesize that contextualizing science learning to culture and community will enhance rural majority and Indigenous early adolescents' science knowledge and positively strengthen motivation and attitudes toward science. Local community and Indigenous group members provide expertise that contributes to the design of the research and the related curriculum as well as the interpretation of the findings. This project will contribute to what we know about how underserved and underrepresented youth engage in STEM learning in relation to their world views. This work will help advance the informal science education field in terms of providing rigorous evidence that can inform theory on learning and motivation among disadvantaged STEM learners as well as address practical issues around the design of STEM programs for rural and Indigenous groups.
DATE: -
TEAM MEMBERS: Eleanor Abrams Thomas Kelly Lisa Townson Ruth Varner Michael Middleton
resource project Public Programs
Water for Life (WfL) is a full scale development youth and community based program; centered on freshwater literacy, water conservation and rainwater harvesting led by the Pacific Resources for Education Learning (PREL) in Hawaii. The goals of the project are to: (a) promote an understanding of water conservation and stewardship in areas lacking adequate quality water supplies and (b) build local capacity among rural communities to develop and employ site specific freshwater harvesting strategies proven to improve water quality. Rural communities within four Pacific Island entities in the U.S. affiliated Freely Associated States (FAS) will participate in WfL activities. PREL is collaborating with a host of organizations (such as the Federated States of Micronesia National Department of Education, Marshall Islands Conservation Society, and the Micronesian Conservation Trust, etc.) to develop and implement all phases of the initiative. This work is already improving the quality of life for hundreds of people in the FAS through water conversation education and improved water quality in local areas. Working closely with site-embedded PREL staff, Core Teams at each site - consisting of 4-6 local leaders from environmental agencies, water/sanitation systems, and education institutions - participated in a 5-day professional learning immersion in May, 2013, to buld capacities to develop and facilitate water conservation and catchment activities at the four target sites in the FAS. The Core Team members at each site now are recruiting and collaborating with local community members to implement site-specific projects that both educate and provide enhanced access to high quality drinking water. Both adults and youth are now engaging in a spectrum of proejcts that address loca needs and priorities through site-specific service learning activities. The site-specific focus in each locale, determined by the local Core Team, is distinct. In Palau, the Core Team has built broader community awareness of water conservation issues, raised the issue of water security in national conversations, engaged remote communities in improving natural rainwater drainage collection systems, and produced youth-oriented educational materials focused on local sites. In Yap, the Core Team members have collaborated with public utilities to install first-flush diverters into community rainwater catchment systems on Yap proper, and now are installing these devices in rainwater catchment systems on Yap's neighbor islands. In Chuuk, groundwater springs in remote communities are being upgraded for improved storage capacity, protection against contamination, and better public access. In Majuro (RMI), public school rainwater catchment systems are being repaired, repainted, cleaned, and upgraded so that schools can and will provide adequate drinking water to students (and to broader segments of the community during droughts). Broad segments of communities, including school classes and clubs, church and civic groups, etc. are becoming increasingly involved in building better water security and resilience for their communities, in preparation for a predicted drought, predicted to hit in the winter of 2014-2015, brought on by an El Nino event now edevelopig in the eastern Pacific. Water for Life has produced a range of locally relevant educational materials, including books, pamphlets, flyers, etc., some in English and others in local languages. Posters and billboards are being produced to enhance and maintain public awareness. Infrastructure projects are enabling better collection of more, higher quality water for drinking. A full-scale water handbook is under development, and this will serve as a basis for a self-contained water 'course' that will be offered through local community colleges. The experiences of project participants are being captured, analyzed, and reported in front-end, formative, and sumative evaluations conducted by David Heil & Associates. Thousands of individuals, comprising large segments of the participating countries' populations, will be directly impacted by the project. The results will be applicable to other remote and rural communities outside of the Pacific distressed by poor water quality and ineffective freshwater harvesting systems.
DATE: -
TEAM MEMBERS: Ethan Allen Danko Taborosi
resource project Exhibitions
This CRPA award addresses the exciting contemporary chemical science that occurs in interstellar space. The new interferometers coming online this year will enhance this new area of science and further intrigue those who engage. The plan in this award is to build an exhibit that will interest the audience with the space-based aspects, but will also engage them in understanding the chemistry that occurs in space. This is a collaborative effort between the University of Virginia and the Harvard-Smithsonian Astrophysical Observatory. The exhibit is relatively small facilitating its mobility. Thus, the authors will travel the exhibit to smaller venues in rural areas and embrace citizens who are typically under-served by educational opportunities of ISE venues. The target audience is 12-15 year old youths. Clearly, this project is meant to engage the public in both Space science and Chemistry with the ultimate hope that some individuals will even think about careers in the joint science field that is emerging from these types of behaviors.
DATE: -
TEAM MEMBERS: Alex Griswold Brooks Pate Edward Murphy Robert Tai
resource project Exhibitions
This project will bring STEM education to rural communities through local public libraries. Museum quality exhibits labelled as "Discover Earth", "Discover Technology", and "Discover Space" will spend 3 months at a series of locations around the Nation. Twenty four medium sized libraries will be chosen for the large exhibits and forty small libraries will be chosen for scaled down versions. The project's intent is to provide exhibits in every state and to reach as many under-represented individuals as possible. The significance of this project is that rural areas of this country are underserved regarding STEM education and since this segment of society is represented by 50-60 million residents, it is important to reach out to them. There is a significant segment of the Nation's population (50-60 million) that is underserved by out-of-school learning venues such as museums and science centers. An earlier phase 1 project demonstrated at 18 sites that rural libraries and librarians could provide STEM education to community members ranging in age from adults to children using these hands-on exhibits. Each exhibit (earth, space or technology) includes information about the topic and technologically enabled models to provide interesting and fun discovery mechanisms. They use common layman friendly language that highlights the most recent discoveries in each area. Each exhibit will be placed in the selected library for 3 months during which the library will organize events to feature and advertise the STEM learning opportunities. Another feature of this project will be to determine the models of learning in library settings and as a function of the demographics. The partners in this project that bring the necessary expertise are the American Library Association, the Afterschool Alliance, the Association of Rural and Small Libraries, the University of Colorado Museum, Datum Advisors, LLC, Evaluation and Research Associates, the Lunar and Planetary Institute, the American Geophysical Union, and the Space Science Institute.
DATE: -
TEAM MEMBERS: Paul Dusenbery Robert Jakubowski Anne Holland Laine Castle Keliann LaConte
resource project Public Programs
This project is intended to develop a model for STEM education through local libraries. There are several unique features in this endeavor. The model is being aimed at rural libraries and adult residents that are geographically remote from typical venues such as museums, zoos, and science centers. According to the 2000 census, there are 50 million individuals in this designation and the size of the group is increasing and becoming more diverse. Efforts to impact diverse audiences who are economically disadvantaged will be part of the plan. In many rural locations there are few community venues, but libraries are often present. The American Library Association and the Association Rural and Small Libraries have begun the reinvention of these libraries so they can become more attuned to the communities in which they are apart. Thus, this project is an effort to find new ways of communicating STEM concepts to a reasonably large underserved group. The design is to derive a "unit of knowledge enhancement" (some portion of Climate Change, for example) through a hybrid combination of book-club and scientific cafe further augmented with videos and web materials. Another part of the design is to enhance the base STEM knowledge of library staff and to associate the knowledge unit with an individual who has the specific STEM topic knowledge for a specific unit. Considerable effort shall be expended in developing the models for staff knowledge enhancement with a progressive number of librarians in training from 8 to 20 to 135. To build the content library model, five units of knowledge will be devised and circulated to participating libraries. Evaluation of the project includes front end, formative and summative by the Goodman Research Group. In addition to the "units of knowledge enhancement," the major results will be the model on how best to relate and educate citizens in rural environments and how to educate the library staff.
DATE: -
TEAM MEMBERS: Daniel Rockmore Marcelo Gleiser Marion Rice John H Falk Alfred Bennett Meighan Maloney
resource project Public Programs
This Pathways project, led by Hubbard Brook Research Foundation (HBRF), develops and pilots a model to foster engagement and learning among diverse stakeholders related to timely ecosystem, social, economic, and policy issues in rural regions of New England's Northern Forest. As such, this project seeks to serve as a model for how other rural areas across the US that have pressing concerns that relate to science, technology, mathematics, and engineering (STEM) may partner with scientists, community members, and local organizations to better understand and become involved in regional issues. Research carried out for more than 50 years at the 7,800-acre Hubbard Brook Experimental Forest?among the longest-running ecosystem studies in the world?has significant implications for decision making at local as well as national levels on topics including climate change, environmental stresses on tree physiology, biomass energy, and invasive pests and pathogens. By employing a Pubic Engagement with Science approach, the project goals focus on learning and equitable participation by both public audiences (local communities and organizations) and professional audiences (scientists who want to engage in informal science learning). In this case, "equitable" means valuing the experiences and knowledge that diverse people have. "Learning" is designed to occur for all participants, such that everyone has a deeper, broader, and more nuanced understanding of STEM, the regional issues, and opportunities for the future. HBRF has designed a three-part model that includes multi-stakeholder dialogue events, workshops and dialogues with scientists working in the region, and regional capacity building for supporting outcomes of the dialogues and workshops. The project evaluation aligns closely with the Public Engagement with Science approach and project goals. As such, over the course of project activities, the evaluation measures both the public's learning and capacity to engage with other stakeholder around regional issues as well as those of the scientists. In addition, the evaluation will document the strategies and capacities of the HBRF model to broaden and sustain productive interactions among diverse regional stakeholders. Dissemination of this pilot project's findings include a case study reflecting on the process, lessons learned, and potential best practices related to the PES model as well as presentations by project leadership at community, scientific, and educational meetings. The pilot would then provide a foundation for an on-going, expanded effort for HBRF in the Northern Forest and/or an expanded effort in the region around a set off issues. In either case, the full-scale project would build from the refined model as well as the capacity built through the pilot.
DATE: -
TEAM MEMBERS: Sarah Garlick David Sleeper
resource project Public Programs
This full-scale development project will address the need for creative models to support STEM learning in underserved rural communities that lack traditional infrastructure such as science centers. The project will create and study an innovative model of capacity-building: viz., small networks of community-embedded “STEM Guides” will be trained to identify a range of existing STEM resources available in their local regions, and to connect STEM-interested youth with them in creative and personal ways. Anticipated learning outcomes for youth and families include greater awareness of and interest in STEM experiences and pathways. At the regional level, the project will build capacity through increasing the STEM Guides’ knowledge of local STEM opportunities, and by enhancing connections among STEM-related resources, programs, and industries. The project will implement and study STEM Guide networks in a staggered series of five low-income, rural regions, providing startup resources and professional development. The project will increase the frequency and depth of out-of-school STEM experiences for approximately 3,000 youth aged 10-18 at a relatively low cost, creating a national model for STEM capacity-building in rural settings. It is led by the Maine Mathematics and Science Alliance, with 4-H, Cornerstones of Science (library-based STEM) and Maine’s university system as collaborators. EDC is the primary external evaluator.
DATE: -
TEAM MEMBERS: Jan Mokros Sue Allen
resource project Public Programs
This Pathways Project connects rural, underserved youth and families in Eastern Washington and Northern Idaho to STEM concepts important in sustainable building design. The project is a collaboration of the Palouse Discovery Science Center (Pullman, WA), Washington State University and University of Idaho, working in partnership with rural community organizations and businesses. The deliverables include: 1) interactive exhibit prototype activities, 2) a team cooperative learning problem-solving challenge, and (3) take-home materials to encourage participants to use what they have learned to investigate ways to make their homes more energy-efficient and sustainable. The project introduces youth and families to the traditionally difficult physics concept of thermal energy, particularly as it relates to sustainable building design. Participants explore how building materials and their properties can be used to control all three types of heat transfer: conduction, convection, and radiation. The interactive exhibit prototypes are coupled with an Energy Efficient Engineering Challenge in which participants, working in cooperative learning teams, use information learned from the exhibit prototype activities to retrofit a model house, improving its energy efficiency. The project components are piloted at the Palouse Discovery Science Center, and then travel to three underserved rural/tribal communities in Northern Idaho and Eastern Washington. Front-end and formative evaluation studies will demonstrate whether this model advances participant understanding of and interest in STEM topics and careers. The project will yield information about ways that other ISE practitioners can effectively incorporate cooperative learning strategies in informal settings to improve the transferability of knowledge gained from exhibits to real-world problem-solving challenges, especially for rural and underserved audiences. This project will also provide the ISE field with: 1) a model for increasing the capacity of small, rural science centers to form collaborative regional networks that draw on previously unused resources in their communities and provide more effective outreach to the underrepresented populations they serve, and 2) a model for coupling cooperative learning with outreach exhibits, providing richer experiences of active engagement.
DATE: -
TEAM MEMBERS: Kathleen Ryan Kathy Dawes Christine Berven Anne Kern Patty McNamara