Skip to main content

Community Repository Search Results

resource research Media and Technology
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Deborah Raksany Karen Elinich Andy Wood Patty Loew Athena Copenhaver
resource evaluation Afterschool Programs
The Arctic Harvest-Public Participation in Scientific Research (which encompasses the Winterberry Citizen Science program), a four-year citizen science project looking at the effect of climate change on berry availability to consumers has made measurable progress advancing our understanding of key performance indicators of highly effective citizen science programs.
DATE:
TEAM MEMBERS: Angela Larson Kelly Kealy Makaela Dickerson
resource evaluation Public Programs
A two-year pilot a two-year pilot and feasibility study funded by NSF’s Advancing Informal STEM Learning (AISL) Program (NSF Award # 1906846)
DATE:
TEAM MEMBERS: Kathleen Gray Dana Haine Rebekah Davis Shaun Kellogg
resource research Public Programs
Community monitoring of harvested rainwater in underserved, rural and urban Arizona communities
DATE:
TEAM MEMBERS: Mónica D. Ramírez-Andreotta Leif Abrell Aminata Kilungo Jean McLain Robert Root-Bernstein
resource project Public Programs
Communities with the highest risk of climate change impacts may also be least able to respond and adapt to climate change, which highlights a specific need for inclusive Science, Technology, Engineering, and Mathematics (STEM) strategies. This Pilot and Feasibility project builds on the success of US Cooperative Extension Service programs that empower volunteers to conduct outreach in their own communities. It focuses on climate change, and seeks to co-design an informal STEM climate science curriculum, called Climate Stewards, in collaboration with community members from groups often underrepresented in STEM, including indigenous and Latinx communities, as well as rural women. The project is designed to strengthen community awareness as well as prioritize community voices in climate change conversations. The knowledge and skills obtained by Climate Stewards and their communities will allow for more involvement in decisions related to climate adaptation and mitigation in their communities and beyond. After establishing a proof of concept, the project seeks to expand this work to more rural and urban communities, other communities of color, and additional socioeconomically disadvantaged communities.

Grounded in the theory of diffusion of innovation as a means for volunteers to communicate information to members of a social system, this project seeks co-create a retooled Climate Stewards curriculum using inclusive and adaptive strategies. Community collaboration and involvement through new and existing partnerships, focus groups, and meetings will determine what each community needs. During the program design phase, community members can share their concerns regarding climate change as well as the unique characteristics and cultural perspectives that should be addressed. The collaboration between extension and education leverage resources that are important for developing a robust implementation and evaluation process. This project is expected to have a significant influence on local and national programs that are looking to incorporate climate change topics into their programming and/or broaden their reach to underrepresented communities. The hypotheses tested in this project describe how inclusion-based approaches may influence competencies in STEM topics and their impact on communities, specifically willingness to take action. Hypothesis 1: STEM competencies in climate issues increase with interactive and peer learning approaches. Hypothesis 2: Community participation in the co-creation of knowledge about climate change, by integrating their values and objectives into the climate change education program, increases people's motivation to become engaged in climate change adaptation and mitigation strategies.

This Pilot and Feasibility project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Patricia Townsend Roslynn McCann Melissa Kreye Arthur Nash
resource project Public Programs
This collaborative project will facilitate rural community education on climate impacts. The Carnegie Natural History Museum and the University of Pittsburgh will work together to form a network of interested community members in Mercer County and Powdermill Nature Reserve in western Pennsylvania to explore the impacts of climate and how its effect could be mitigated or accommodated. The project is has three related ideas: (1) museums hold valuable resources for understanding environmental change, (2) museums are not serving rural audiences well, and (3) complex socio-scientific environmental topics are deeply connected to social decision making in rural communities. This project will bring an inclusive approach to the discussion of socio-scientific issues in rural Western PA, through building relationships between local public audiences, STEM professionals, and informal learning specialists, creating opportunities for co-development of resources and building organizational capacity. The overarching goals of the project are to explore how museums can better serve rural stakeholders and increase the capacity for science-based conversations about human-caused climate impacts.

This project involves a cross-disciplinary team with Carnegie Museum of Natural History providing expertise in interpretation and ecological science, the University of Pittsburgh Center for Learning in Out of School Environments (UPCLOSE) providing expertise in learning research, and rural Hubs centered at Powdermill Nature Reserve (PNR) and the Mercer County Conservation District providing expertise in environmental education, conservation, and engagement with rural communities. The Hubs will coordinate professional development workshops, collaborative design sessions, and community gatherings to bring local stakeholders together to examine and adapt existing resources, including environmental science data and climate education tools, to local issues. These activities will be structured through a Research Practice Partnership. Each will have its own unique mix of geography, demographics, resources, and challenges.

The Research questions are: 1. How can the project effectively support the creation of socially safe spaces for rural Western PA communities to have science-based discussions around climate impacts? 2. How does work with rural partners influence the development of the museum's Center for Climate Studies and its mission to offer programs designed to support public engagement?

3. In what ways have museums been able to support learning about climate topics in rural communities? Data will be gathered from interviews and case studies. There will be two longitudinal studies of local network change and museum change. A survey will also be done to assess the impact of the project on the public. Protocols will be developed in collaboration with the Hubs.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Lauren Giarratani Nicole Heller Kevin Crowley
resource evaluation Public Programs
RMC Research designed evaluation activities to provide formative and summative feedback to the Hubbard Brook Research Foundation (HBRF) on their NSF Pathways project, Forest Science Dialogues (FSD). FSD consists of a plan to engage with scientists at the Hubbard Brook Ecosystem Study and with the surrounding community using the Hubbard Brook Roundtable dialogue process in order to facilitate mutual learning. The purpose of this engagement was to increase public knowledge, understanding, and awareness of ecosystem science in the Northern Forest in order to enrich local dialogue surrounding
DATE:
TEAM MEMBERS: RMC Research Sarah Garlick
resource project Public Programs
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.

The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Katie Spellman Elena Sparrow Christa Mulder Deb Jones
resource project Public Programs
A frequently missing element in environmental education programs is a concerted effort by communities, organizations, government, and academic stakeholders to build meaningful partnerships and cultivate informal science learning opportunities via public participation in environmental research. This collaborative approach not only makes scientific information more readily available, it also engages community members in the processes of scientific inquiry, synthesis, data interpretation, and the translation of results into action. This project will build a co-created citizen science program coupled with a peer education model and an extensive communication of results to increase environmental STEM literacy. The project targets historically underrepresented populations that are likely to be disproportionately impacted by climate, water scarcity, and food security. Based upon past needs assessments in the targeted communities, gardens irrigated by harvested rainwater will become hubs for environmental STEM education and research. For this project, gardens irrigated by harvested rainwater will serve as hubs for environmental literacy education efforts. Researchers from the University of Arizona and Sonora Environmental Research Institute will work alongside community environmental health workers, who will then train families residing in environmentally compromised areas (urban and rural) on how to monitor their soil, plant, and harvested water quality. The project aims to: (1) co-produce environmental monitoring, exposure, and risk data in a form that will be directly relevant to the participants' lives, (2) increase the community's involvement in environmental decision-making, and (3) improve environmental STEM literacy and learning in underserved rural and urban communities. The project will investigate and gather extensive quantitative and quantitative data to understand how: (1) participation in a co-created citizen science project enhances a participant's overall environmental STEM literacy; (2) a peer-education model coupled with a co-created citizen science program affects participation of historically underrepresented groups in citizen science; and (3) the environmental monitoring approach influences the participant's environmental health learning outcomes and understanding of the scientific method. In parallel, this project will evaluate the role of local-based knowledge mediators and different mechanisms to communicate results. These findings will advance the fields of informal science education, environmental science, and risk communication. Concomitantly, the project will facilitate the co-generation of a robust dataset that will not only inform guidelines and recommendations for harvested rainwater use, it will build capacity in underserved communities and inform the safe and sustainable production of food sources. This research effort is especially critical for populations in arid and semiarid environments, which account for ~40% of the global land area and are inhabited by one-third of the world's population. This program will be available in English and Spanish and can truly democratize environmental STEM research and policy. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Monica Ramirez-Andreotta Aminata Kilungo Leif Abrell Jean McLain Robert Root
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project fosters participatory science learning in rural agricultural communities.
DATE:
TEAM MEMBERS: Nicole Colston
resource project Public Programs
The project is supported under the NSF Science, Engineering and Education for Sustainability Fellows (SEES Fellows) program, with the goal of helping to enable discoveries needed to inform actions that lead to environmental, energy and societal sustainability while creating the necessary workforce to address these challenges. Sustainability science is an emerging field that addresses the challenges of meeting human needs without harm to the environment, and without sacrificing the ability of future generations to meet their needs. A strong scientific workforce requires individuals educated and trained in interdisciplinary research and thinking, especially in the area of sustainability science. With the SEES Fellowship support, this project will enable a promising early career researcher to establish herself in an independent research career related to sustainability. This project builds upon Resiliency Theory and theories of applied community participation to explore two specific contexts of participatory communication (i.e., processes of collective learning and shared meaning) at the science-society interface: (1) adaptive co-management meetings in New Mexico and Oklahoma, and (2) existing education efforts by drought scientists at two Great Plains universities (Oklahoma State University and University of Nebraska-Lincoln). A mixed methods approach (including, household surveys, oral histories, key informant interviews, and pilot tests) will model community-partnership capacity for drought adaptation in Cimarron (OK) and Union (NM) Counties, and assess the impact of community-academic partnerships on drought literacy and adaptive capacity across the Great Plains. Research in adaptive co-management meetings and interactive media (as contexts for participatory communication between scientists and citizens) provides the context for innovative case study research on the role of public communication about science in community drought adaptation.

Collaboration in case study research with Host Mentor Vadjunec and outreach efforts with Partner Institution Mentor Thomas (UNL) offers a unique opportunity to research the intersections of participatory communication and scientific literacy about the human and climatic drivers of extreme drought. The core research questions addressed by this proposal are, (1) What formal and informal pathways, players, and partnerships exist for participatory communication between scientists and citizens about drought vulnerability and adaptation, (2) How does communication about drought risk and recovery inform the effective diffusion and translation of drought literacy efforts in the Great Plains, and (3) How can we design forums and spaces for sustained interaction (i.e., engagement and collective learning) between stakeholders involved in adaptive drought communication? The project objectives uniquely related to advancing research at the intersections of sustainability science and education are, (1) to identify dimensions of community and partnership capacity for drought education and pathways of adaptive drought communication across scales, (2) to advance dynamic participatory models which assist in the adaptive co-management of water resources in local communities (i.e., increasing citizen-science dialogue, mobilizing community leaders, and fostering the drought education partnerships), and (3) to design and measure the success of drought literacy efforts based on inputs from sustainability scientists at various stages of community decision-making. The adaptive drought co-management workshops in NM and OK provide spaces for stakeholder interaction, which may lead to new approaches, innovations, and learning outcomes for communities in those regions. Outreach partnerships with UNL maximize dissemination of user-friendly and culturally-relevant drought outreach products, including a project website to consolidate scientific knowledge about drought in the Great Plains and interactive media templates. Interdisciplinary collaborations and research findings will inform efforts in academic community partnerships for sustainable practices across many NSF-supported disciplines.
DATE: -
TEAM MEMBERS: Nicole Colston
resource project Public Programs
This Pathways project, led by Hubbard Brook Research Foundation (HBRF), develops and pilots a model to foster engagement and learning among diverse stakeholders related to timely ecosystem, social, economic, and policy issues in rural regions of New England's Northern Forest. As such, this project seeks to serve as a model for how other rural areas across the US that have pressing concerns that relate to science, technology, mathematics, and engineering (STEM) may partner with scientists, community members, and local organizations to better understand and become involved in regional issues. Research carried out for more than 50 years at the 7,800-acre Hubbard Brook Experimental Forest?among the longest-running ecosystem studies in the world?has significant implications for decision making at local as well as national levels on topics including climate change, environmental stresses on tree physiology, biomass energy, and invasive pests and pathogens. By employing a Pubic Engagement with Science approach, the project goals focus on learning and equitable participation by both public audiences (local communities and organizations) and professional audiences (scientists who want to engage in informal science learning). In this case, "equitable" means valuing the experiences and knowledge that diverse people have. "Learning" is designed to occur for all participants, such that everyone has a deeper, broader, and more nuanced understanding of STEM, the regional issues, and opportunities for the future. HBRF has designed a three-part model that includes multi-stakeholder dialogue events, workshops and dialogues with scientists working in the region, and regional capacity building for supporting outcomes of the dialogues and workshops. The project evaluation aligns closely with the Public Engagement with Science approach and project goals. As such, over the course of project activities, the evaluation measures both the public's learning and capacity to engage with other stakeholder around regional issues as well as those of the scientists. In addition, the evaluation will document the strategies and capacities of the HBRF model to broaden and sustain productive interactions among diverse regional stakeholders. Dissemination of this pilot project's findings include a case study reflecting on the process, lessons learned, and potential best practices related to the PES model as well as presentations by project leadership at community, scientific, and educational meetings. The pilot would then provide a foundation for an on-going, expanded effort for HBRF in the Northern Forest and/or an expanded effort in the region around a set off issues. In either case, the full-scale project would build from the refined model as well as the capacity built through the pilot.
DATE: -
TEAM MEMBERS: Sarah Garlick David Sleeper