Skip to main content

Community Repository Search Results

resource project Public Programs
In partnership with early childhood service providers and elementary school systems, the Children's Museum of the Lowcountry will expand the reach of its programming to share its hands-on, play-based approach to STEM education with targeted children and educators. The museum will create a Power of Play curriculum with lesson plans that reflect best practices and focus on play-based activities to teach STEM concepts tied to grade level and state standards. The museum will train and support 40 teachers and educators from ten Head Start/First Steps early childhood centers and ten Title I elementary schools, and provide them with free Pop Up Tinker Shop (a museum on wheels) outreach visits. The trainings will build teacher confidence, promote best practices for play-based learning, support a community of practice, and enhance young learners' engagement, fascination, and attitude towards STEM. The Power of Play Curriculum will be published as a bound resource and shared with other children's museums and service providers.
DATE: -
TEAM MEMBERS: Starr Jordan
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. There are few empirical studies of sustained youth engagement in STEM-oriented making over time, how youth are supported in working towards more robust STEM related projects, on the outcomes of such making experiences among youth from historically marginalized communities, or on the design features of making experiences which support these goals. The project plans to conduct a set of research studies to develop: a theory-based and data-driven framework for equitably consequential making; a set of related individual-level and program-level cases with exemplars (and the associated challenges) that can be used by researchers and practitioners for guiding the field; and an initial set of guiding principles (with indicators) for identifying equitably consequential making in practice. The project will result in a framework for equitably consequential making with guiding principles for implementation that will contribute to the infrastructure for fostering increased opportunities to learn among all youth, especially those historically underrepresented in STEM.

Through research, the project seeks to build capacity among STEM-oriented maker practitioners, researchers and youth in the maker movement around equitably consequential making to expand the prevailing norms of making towards more transformative outcomes for youth. Project research will be guided by several questions. What do youth learn and do (in-the-moment and over time) in making spaces that work to support equity in making? What maker space design features support (or work against) youth in making in equitably consequential ways? What are the individual and community outcomes youth experience in STEM-making across settings and time scales? What are the most salient indicators of equitably consequential making, how do they take shape, how can these indicators be identified in practice? The project will research these questions using interview studies and critical longitudinal ethnography with embedded youth participatory case study methodologies. The research will be conducted in research-practice partnerships involving Michigan State University, the University of North Carolina at Greensboro and 4 local, STEM- and youth-oriented making spaces in Lansing and Greensboro that serve historically underrepresented groups in STEM, with a specific focus on youth from lower-income and African American backgrounds.
DATE: -
resource research Making and Tinkering Programs
This report, from the "Tinkering EU: Building Science Capital for All" project, provides a theoretical rationale for understanding the relationship between Tinkering as a pedagogical approach, students’ individual science capital, and inclusive STEM teaching approaches. By exploring the relationship between these three areas, it invites professionals to reflect on the ways in which Tinkering can be used a teaching tool for building science capital.
DATE:
TEAM MEMBERS: MARIA XANTHOUDAKI Emily Harris Mark Winterbottom
resource project Afterschool Programs
“Tinkering EU: Building Science Capital for All” aims to develop activities and resources that support a learner-centred culture, improve science education and develop 21st century skills - all of which are fundamental for active citizenship, employability, and social inclusion. To do this, it adopts ‘Tinkering’, an innovative pedagogy developed in the USA, which is used by museums, and has proven able to create a lifelong engagement with science for everyone. Tinkering works particularly well for people who argue that “they are not good at science” or are disaffected from any formal teaching and learning process. It can be a powerful tool to tackle disadvantage. The project integrates Tinkering into the school curriculum to develop the science capital of disadvantaged youth through the use of museums. It addresses students from 8 to 14 years old (primary and junior high schools).

Coordinator: National Museum of Science and Technology Leonardo da Vinci

Partners:
University of Cambridge – UK
NEMO Science Museum – The Netherlands
Science Gallery Dublin – Ireland
CosmoCaixa – Spain
Science Center Network – Austria
NOESIS – Greece
DATE: -
TEAM MEMBERS: MARIA XANTHOUDAKI
resource project Making and Tinkering Programs
This NSF INCLUDES Design and Development Launch Pilot (named ALCSE-INCLUDES) project will develop and implement an innovative computer science (CS) education model that will provide all 8th grade students in 3 districts in Alabama's 'Black Belt' with exciting and structured hands-on activities intended to make CS learning enjoyable. The course will use an educational style called "learning CS by making" where students will create a CS-based product (such as a robot) and understand the concepts that make the product work. This hands-on approach has the potential to motivate diverse student populations to pursue higher level CS courses and related disciplines during and after high school, and to join the CS workforce, which is currently in need of more qualified workers.

ALCSE-INCLUDES Launch Pilot will unite the efforts of higher education institutions, K-12 officials, Computer Science (CS)-related industry, and community organizations to pursue a common agenda: To develop, implement, study, and evaluate a scalable and sustainable prototype for CS education at the middle school level in the Alabama Black Belt (ABB) region. The ABB is a region with a large African-American, low-income population; thus, the program will target individuals who have traditionally had little access to CS education. The prototype for CS education will be piloted with 8th grade students in 3 ABB schools, using a set of coordinated and mutually reinforcing activities that will draw from the strengths of all members of the ALCSE Alliance. The future scaled-up version of the program will implement the prototype in the 73 middle schools that comprise ALL 19 school districts of the ABB. The program's main innovation is to provide CS education using a makerspace, a dedicated area equipped with grade-appropriate CS resources, in which students receive mentored and structured hands-on activities. The goal is to engage ALL students, in learning CS through making, an evidence-based pedagogical approach expected to reinforce skills and promote deep interest in CS.
DATE: -
TEAM MEMBERS: Shaik Jeelani Bruce Crawford Mohammed Qazi Jeffrey Gray Jacqueline Brooks
resource research Summer and Extended Camps
Increased emphasis on K-12 engineering education, including the advent and incorporation of NGSS in many curricula, has spurred the need for increased engineering learning opportunities for younger students. This is particularly true for students from underrepresented minority populations or economically disadvantaged schools, who traditionally lag their peers in the pursuit of STEM majors or careers. To address this deficit, we have created the Hk Maker Lab, a summer program for New York City high school students that introduces them to biomedical engineering design. The students learn the
DATE:
TEAM MEMBERS: Aaron Matthew Kyle Michael Carapezza Christine Kovich
resource project Public Programs
The Maker movement has grown considerably over the past decade, both in the USA and internationally. Several varieties of "making" have been developed, but there are still many important questions to ask and research to conduct about how different programmatic structures may relate to the potential impact Maker programs can have on individuals and communities. As part of a larger, long-range initiative in their local community, the New York Hall of Science proposes to leverage the philosophy and activities of the Maker movement to take important first steps toward realizing their eventual goal of developing family and community-wide commitment to and improvement of STEM education. The project would build both foundational and practical knowledge about how parents with little or no prior knowledge of or experience with Making choose to engage with, contribute to, and learn from Maker programming designed for families with children from low-income households and backgrounds that are under-represented in the STEM professions. The intent is to build their understanding of the value of Making as a pathway toward deeper STEM learning. The project is characterized as "high-risk with potentially high-payoff." It applies a community psychology approach (rather than individual psychology) to the study of Making, and it focuses on parents as potential learners and leaders. While some work has been done in the field with respect to the role of parents in Maker environments, this is a new approach to the study of Making and its potential influence on the broader culture of STEM learning in a community. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

Two informal learning environments will be developed and studied at the New York Hall of Science: Learning Together, a table-top, minimally staff-facilitated setting in the Hall's science library, and Family Making, a high-tech and staff-facilitated experience in the Hall's maker facility. The study poses two research questions: (1) How, and to what extent, do the Learning Together and Family Making programs attract and sustain parental engagement, parental facilitation of children's activity, and parents' own explorations of Making? (2) From a community psychology perspective, what social structures, resources, social processes, and surrounding institutional conditions support or impede these parental pathways into exploring and understanding Making as a pathway toward STEM learning? The study will involve sustained collaborations between the Hall's Maker Space staff and research team, and will seek to generate guidance about how to design Maker programming that attracts and retains low-income, under-served family groups and new knowledge about how external structures and practices shape this audiences' perceptions of and interest in Making as a mode of STEM learning.
DATE: -
TEAM MEMBERS: Katherine McMillan David Wells Susan Letourneau
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. There are few empirical studies of sustained youth engagement in STEM-oriented making over time, how youth are supported in working towards more robust STEM related projects, on the outcomes of such making experiences among youth from historically marginalized communities, or on the design features of making experiences which support these goals. The project plans to conduct a set of research studies to develop: a theory-based and data-driven framework for equitably consequential making; a set of related individual-level and program-level cases with exemplars (and the associated challenges) that can be used by researchers and practitioners for guiding the field; and an initial set of guiding principles (with indicators) for identifying equitably consequential making in practice. The project will result in a framework for equitably consequential making with guiding principles for implementation that will contribute to the infrastructure for fostering increased opportunities to learn among all youth, especially those historically underrepresented in STEM.

Through research, the project seeks to build capacity among STEM-oriented maker practitioners, researchers and youth in the maker movement around equitably consequential making to expand the prevailing norms of making towards more transformative outcomes for youth. Project research will be guided by several questions. What do youth learn and do (in-the-moment and over time) in making spaces that work to support equity in making? What maker space design features support (or work against) youth in making in equitably consequential ways? What are the individual and community outcomes youth experience in STEM-making across settings and time scales? What are the most salient indicators of equitably consequential making, how do they take shape, how can these indicators be identified in practice? The project will research these questions using interview studies and critical longitudinal ethnography with embedded youth participatory case study methodologies. The research will be conducted in research-practice partnerships involving Michigan State University, the University of North Carolina at Greensboro and 4 local, STEM- and youth-oriented making spaces in Lansing and Greensboro that serve historically underrepresented groups in STEM, with a specific focus on youth from lower-income and African American backgrounds.
DATE: -
TEAM MEMBERS: Angela Calabrese Barton Scott Calabrese Barton Edna Tan
resource project Public Programs
While the term 'failure' brings to mind negative associations, there is a current focus on failure as a driver of innovation and development in many professional fields. It is also emerging from prior research that for STEM professionals and educators, failure plays an important role in designing and making to increase learning, persistence and other noncognitive skills such as self-efficacy and independence. By investigating how youth and educators attend to moments of failure, how they interpret what this means, and how they respond, we will be better able to understand the dynamics of each part of the experience. The research team will be working with youth from urban, suburban and rural settings, students from Title I schools or who qualify for free/reduced-price lunches, those from racial and ethnic minority groups, as well as students who are learning English as a second language. These youth are from groups traditionally underrepresented in STEM and in making, and research indicates they are more likely to experience negative outcomes when they experience failure.

The intellectual merit of this project centers on establishing a baseline understanding of how failure in making is triggered and experienced by youth, what role educators play in the process, and what can be done to increase persistence and learning, rather than failure being an end-state. The research team will investigate these issues through the use of qualitative and quantitative research methods. In particular, the team will design and evaluate the effectiveness of interventions on increasing the abilities of youth and educators in noticing and responding to failures and increasing positive (e.g., resilience) outcomes. Research sites are selected because they will allow collection of data on youth from a wide range of backgrounds. The research team will also work to test and revise their hypothesized model of the influence of factors on persistence through failures in making. This project is a part of NSF's Maker Dear Colleague Letter (DCL) portfolio (NSF 15-086), a collaborative investment of Directorates for Computer & Information Science & Engineering (CISE), Education and Human Resources (EHR) and Engineering (ENG).
DATE: -
TEAM MEMBERS: Adam Maltese Amber Simpson Alice Anderson
resource project Public Programs
This project by California State University San Marcos and their collaborators will expand and continue to innovate on a pilot Mobile Making program with the goal of developing a sustainable, regional model for serving underserved, middle-school aged youth in twelve after-school programs in the San Diego region. Evaluation of the current Mobile Making program has documented positive impacts on participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life, and led to a model for engaging underserved youth in Making. The work will focus on implementing the program model sustainably at greater capacity by increasing the number of undergraduate activity leaders, after-school sites, and level of community engagement. The expanded Mobile Making program is expected to engage ~1800 middle school youth at 12 local school sites, with activities facilitated by ~1020 undergraduate CSU-SM STEM majors. The sites are in ethnically diverse and economically disadvantaged neighborhoods, with as many as 90% of students at some sites qualifying for free or reduced price lunch. The undergraduate facilitators are drawn from CSU-SM's diverse student body, which includes 44% underrepresented minorities. Outcomes are expected to include increases in the youth participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life. Positive impacts on the undergraduate facilitators will include broadened technical skills, increased leadership and 21st century skills, and increased lifelong interest in STEM outreach/informal science education. The program is designed to achieve sustainability through innovative means such as involving undergraduate facilitators via Community Service Learning (rather than paid positions), and increased community engagement via development and support of a community of practice including local after-school providers, teachers, Makers, and University members. Evaluation of the program outcomes and lessons learned are expected to result in a comprehensive model for a sustainable, university-based after-school Making program with regional impact in underserved communities. Dissemination to other regions will be leveraged via CSU-SM's membership in the California State University (CSU) system, yielding a potential statewide impact. The support of the CSU Chancellor's Office and input from a CSU implementation group will ensure the applicability of the model to other regional university settings, identify common structural barriers and solutions, and increase the probability of secondary implementations. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Edward Price Charles De Leone
resource project Public Programs
As part of an overall strategy to enhance learning within maker contexts in formal and informal environments, the Innovative Technology Experiences for Students and Teachers (ITEST) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models in Making poised to catalyze new approaches in STEM learning and innovation. Employing a novel design and development approach, this Early Concept Grant for Exploratory Research (EAGER) will test the feasibility of integrating Making concepts with real world micro-manufacturing engineering principles within the context of intense, multi-year team apprenticeship experiences for high school students. The apprenticeship model is particularly novel, as current Making research and experiences predominately take place in afterschool and summer programs for up to 25 youth. The proposed apprenticeships will require a two year commitment by a small cohort of Texas high school students, which will provide an opportunity to examine the feasibility and impact of the effort longitudinally. The cohort will learn to think critically, solve problems, and work together as a Making Production Team (MPT) in a customized makerspace in their high school, constructing engineering-based science kits for implementation in a local elementary school. Not only will the students enhance their content knowledge while developing design and development skills but the students will also receive stipends which will address two very practical needs for the targeted high need population - employment and workforce development. Few, if any, efforts currently serve the targeted population through the contextualization of Making within a supply chain management and micro-manufacturing framework that extends the Making experience by integrating the student designed products into elementary classrooms. As such, this project will contribute to essentially unexplored areas of Making research and development.

Six high school students from high poverty, underserved Texas communities along the Texas-Mexico border (colonias) will be selected for the Making Production Team (MPT). In Years 1 and 2, the students will meet regularly during the academic school year and over the summer with Texas A & M University undergraduates, graduate students, and the project team to learn key aspects of Making and manufacturing (i.e., ideation, prototyping, design, acquisition, personnel, and production) through hands-on making activities and direct instruction. Concurrently, a research study will be conducted to explore: (a) the actualization of the model in an underserved community, (b) the effectiveness of problem-based learning to train students in the model, and (c) STEM knowledge and self-concept. Data will be collected from multiple sources. An adapted version of the Academic Self-Description Questionnaire will be administered to the students to assess their STEM technical knowledge and skills as well as their self-concept in relation to STEM domains. Remote and in person interviews will be conducted with the students to track the evolution of the primary dependent variables, STEM learning and self-concept, over time. Program facilitators and partners will be interviewed to examine the feasibility of the making experience within the given context and for the targeted students. Finally, the students' diary reflections, products, and video recordings of their work sessions will also be examined. Time-series quantitative tests and in-depth qualitative methods will be used to analyze the data.
DATE: -
TEAM MEMBERS: Francis Quek Sharon Lynn Chu Malini Natarajarathinam Mathew Kuttolamadom