Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
This "mini-poster," a two-page slideshow presenting an overview of the project, was presented at the 2023 AISL Awardee Meeting.
DATE:
TEAM MEMBERS: Barry Fishman Leslie Herrenkohl Nichole Pinkard Katie Headrick Taylor Yolanda Majors
resource evaluation Museum and Science Center Exhibits
The Kaulele Kapa Exhibit was created to explore the effectiveness of a Hawaiian culture-based framework and approach in increasing learner engagement and depth of knowledge in STEM among Native Hawaiian/Pacific Islander (NHPI) learners. The exhibit utilized hands-on and interactive activities, coupled with scientific and cultural information, to create relevant learning experiences for these communities.  To determine the effectiveness, exhibit attendees were invited to complete a survey that asked about how the exhibit influenced their interest and understanding of STEM and Hawaiian culture
DATE:
TEAM MEMBERS: Ciera Pagud Rachelle Chauhan
resource project Public Programs
The Key West Tropical Forest and Botanical Garden will strengthen and expand its “Living Laboratory,” a hands-on outdoor youth environmental education program. New curricula will target students in preschool through 6th grade to expand the reach of the program. Additional programming will serve students in middle school and high school, including facilitating guided research projects for students in the district STEM Fair. Partnerships with local organizations will help to expand inclusive programming for at-risk and economically disadvantaged students and make the program free. They will use student-created videos of their experiments and activities to create multimedia online tutorial resources for educators.
DATE: -
TEAM MEMBERS: Robin Sarabia
resource project Public Programs
ECHO, Leahy Center for Lake Champlain will launch the Partners in School Science Excellence (SciExcel) project, designed to deliver high-quality STEM opportunities to low-resourced students by growing the capacity of northwestern Vermont schools that lack science subject specialists. Building on lessons learned from national and regional museum-school partnership models, ECHO will facilitate school self-assessments in which partner schools will evaluate their current STEM programs and identify actions for improvement. The museum will work closely with three primary schools and nine Head Start preschools to provide coaching, teaching methods, and curriculum consultation. The museum will also offer Community STEM Nights where partner schools will engage families in the celebration of science excellence. The project will allow the museum to strengthen its existing relationships with low performing primary schools and Head Start preschools while expanding its geographic reach to rural service areas.
DATE: -
TEAM MEMBERS: Nina Ridhibhinyo
resource project Informal/Formal Connections
This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

This project will create the specification for a learner-controlled system to represent youth learning in Out-of-School-Time (OST) settings, to improve access to future Science, Technology, Engineering, and Mathematics (STEM) learning opportunities. For learners to pursue a STEM education, and STEM careers, they must be able to move through "gatekeeping" mechanisms that filter and sort students based on factors such as prior coursework and grades, teacher recommendations, and language proficiency assessments. Even though abundant evidence shows that such measures fail to capture all important aspects of STEM learning, they are traditionally relied upon in secondary and post-secondary STEM education contexts as indicators of preparation for future STEM learning. These systemic processes exclude certain minoritized groups, including Black, Indigenous, and other people of color (BIPOC), low income, immigrant and refugee youth, and youth learning English, from high-quality secondary and post-secondary STEM learning experiences because existing measures do not validate their prior knowledge and experiences. Yet, minoritized youth often engage in OST STEM learning opportunities, where their readiness for future learning opportunities is nurtured and valued. One challenge is to reliably document this readiness in a usable format so youth can access new STEM learning opportunities, especially in post-secondary contexts. This project builds strategically upon earlier work focusing on the democratization of STEM learning through vehicles such as digital micro-credentials or badges, and upon digital portfolios. Missing from these earlier efforts was integration of these platforms with an infrastructure that connected youth learners to OST STEM learning organizations and to future STEM learning opportunities. This Innovations in Development project brings together minoritized youth and their families, OST providers, and admissions officials from higher education institutions to explore the needed design features for OST "transcripts," and user stories that describe how software systems can support their creation and sharing. Grounded in the concept of mastery-based learning, where learning is demonstrated via action, learners will control what is included in the transcript so that they create their own narratives about their learning experiences. Recognizing that documentation is not the key focus of most STEM OST organizations, this project will provide direct support for identifying and codifying learning goals or outcomes that learners and their families find relevant and important within different STEM activities. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

The project will take a Design-Based Implementation Research (DBIR) approach and proceed by convening representatives from three main stakeholder groups (youth and their families, OST providers, and admissions staff) to engage in a series of discovery and design activities. Project partners, including the Mastery Transcript Consortium (MA), STEAMville (IL), STUDIO (WA), and Wolverine Pathways (MI), will work together with the PIs to design templates learners can use to characterize STEM learning from each provider, aligned with different STEM learning foci (e.g., computer science, computational thinking, cross-cutting concepts, science and engineering practices, and mathematics). Data collected from these sessions will be used to address the following research questions: (1) How and why do youth and families from minoritized communities understand and choose to participate in STEM OST learning opportunities?, (2) How do youth understand and interact with STEM OST learning opportunities?, (3) How do OST providers characterize the STEM learning goals in the activities they provide?, and (4) How do college admissions personnel view the role of informal STEM learning as part of a holistic admissions process? This work has the potential to further the understanding of how OST learning can be documented and shared as a part of the larger ecosystem of STEM learning trajectories. By deeply engaging the perspectives and voices of minoritized youth and families, this project seeks to develop a valid and trustworthy instrument that recognizes and serves their STEM learning, thus broadening the participation of minoritized youth in STEM education and careers. This work will also benefit OST providers, by translating the documentation of youth STEM learning into forms that may help communicate the efficacy of their programs in ways that further their missions, including communicating evidence of effectiveness to both future participants and funders.
DATE: -
TEAM MEMBERS: Barry Fishman Leslie Herrenkohl Katie Headrick Taylor Nichole Pinkard
resource research Informal/Formal Connections
Overlaying Computer Science (CS) courses on top of inequitable schooling systems will not move us toward “CS for All.” This paper prioritizes the perspectives of minoritized students enrolled in high school CS classrooms across a large, urban school district in the Western United States, to help inform how CS can truly be for all.
DATE:
TEAM MEMBERS: Jean Ryoo Tiera Tanksley Cynthia Estrada Jane Margolis
resource project Media and Technology
Research shows that algebra is a major barrier to student success, enthusiasm and participation in STEM for under-represented students, particularly African-American students in under-resourced high schools. Programs that develop ways to help students master algebra concepts and a belief that they can perform algebra may lead to more students entering engineering careers. This project will provide an online engineering program to support 9th and 10th grade Baltimore City Public Schools students, a predominantly low-income African-American cohort, to develop concrete goals of becoming engineers. The goals of the program are to help students with a growing interest in engineering to maintain that interest throughout high school. The project will also support students aspire to an engineering career. The project will develop in students an appreciation of requisite courses and skills, and increase self-efficacy in mathematics. The project will also develop a replicable model of informal education capable of reinforcing the mathematical foundations that students learn during the school day. Additionally, the project will broaden participation in engineering by being available to students during out-of-school time and by having relaxed entrance criteria compared to existing opportunities in supplemental engineering curricula. The project is a collaboration between the Baltimore City Public Schools, Johns Hopkins University Applied Physics Laboratory, Northrop Grumman Corporation, and Expanded School-Based Mental Health programs to support students both during and after participation. The project will benefit society by providing skills that will allow high school students to become members of tomorrow's highly trained STEM workforce.

The research will test whether an informal, scaffolded online algebra-for-engineering program increases students' mastery and self-efficacy in mathematics. The research will advance knowledge regarding informal education by applying Social Cognitive Career Theory as a framework for measuring program impact. The theoretical framework will aid in identifying mechanisms through which students with interest in engineering might persist in maintaining this interest through high school via algebra skill mastery and increased self-efficacy. The project will recruit 200 youth from the Baltimore City Public Schools to participate in the project over three years. Qualitative data will be collected to assess how student and school socioeconomic factors impact implementation, student engagement, and outcomes. The research will answer the following questions: 1) What effect does program participation have on math mastery? 2) What direct and indirect effects do program completion and supports have on students' mathematics self-efficacy? 3) What direct and indirect effects do program components have on engineering career goals by the end of the program? 4) What direct and indirect effects does math self-efficacy have on career goals? 5) To what extent are the effects of program participation on engineering career goals mediated by math self-efficacy and engineering interest? 6) How do school factors relate to the implementation of the program? 7) What socioeconomic-related factors relate to the regularity and continuation of student participation in the program? The quantitative methods of data analysis will employ descriptive and multivariate statistical methods. Qualitative data from interviews will be analyzed using an emergent approach and a coding scheme guided by theoretical constructs. Project results will be communicated to scholars and practitioners. The team will also share information through school newsletters and parent communication through Baltimore City Public Schools.

This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michael Falk Christine Newman Rachel Durham
resource research Media and Technology
Science Hunters is an outreach project which employs the computer game Minecraft to engage children with scientific learning and research through school visits, events, and extracurricular clubs. We principally target children who may experience barriers to accessing Higher Education, including low socioeconomic status, being the first in their family to attend university, and disability (including Special Educational Needs). The Minecraft platform encourages teamwork and makes science learning accessible and entertaining for children, irrespective of background. We employ a flexible approach
DATE:
TEAM MEMBERS: Laura Hobbs Carly Stevens Jackie Hartley Calum Hartley
resource research Media and Technology
We explored the potential of science to facilitate social inclusion with teenagers who had interrupted their studies before the terms set for compulsory education. The project was carried out from 2014 to 2018 within SISSA (International School for Advanced Studies), a scientific and higher education institution in physics, mathematics and neurosciences, and was focused on the production of video games using Scratch. The outcomes are encouraging: through active engagement, the participants have succeeded in completing complex projects, taking responsibilities and interacting with people
DATE:
TEAM MEMBERS: Simona Cerrato Francesca Rizzato Lucia Tealdi Elena Canel
resource research Public Programs
This paper contributes a theoretical framework informed by historical, philosophical and ethnographic studies of science practice to argue that data should be considered to be actively produced, rather than passively collected. We further argue that traditional school science laboratory investigations misconstrue the nature of data and overly constrain student agency in their production. We use our “Data Production” framework to analyze activity of and interviews with high school students who created data using sensors and software in a ninth-grade integrated science class. To understand the
DATE:
TEAM MEMBERS: Lisa Hardy Colin Dixon Sherry Hsi
resource project Public Programs
The RASOR project is designed to increase engagement of students from rural Alaska communities in biomedical/STEM careers. Rural Alaskan communities are home to students of intersecting identities underrepresented in biomedical science, including Alaska Native, low-income, first generation college, and rural. Geographic isolation defines these communities and can limit the exposure of students to scientifically-minded peers, professional role models, and science career pathways. However these students also have a particularly strong environmental connection through subsistence and recreational activities, which makes the one-health approach to bio-medicine an intuitive and effective route for introducing scientific research and STEM content. In RASOR, we will implement place-based mentored research projects with students in rural Alaskan communities at the high school level, when most students are beginning to seriously consider career paths. The biomedical one-health approach will build connections between student experiences of village life in rural Alaska and biomedical research. Engaging undergraduate students in research has proved one of the most successful means of increasing the persistence of minority students in science (Kuh 2008). Furthermore, RASOR will integrate high school students into community-based participatory research (Israel et al. 2005). This approach is designed to demonstrate the practicality of scientific research, that science has the ability to support community and cultural priorities and to provide career pathways for individual community members. The one-health approach will provide continuity with BLaST, an NIH-funded BUILD program that provides undergraduate biomedical students with guidance and support. RASOR will work closely with BLaST, implementing among younger (pre-BLaST) students approaches that have been successful for retaining rural Alaska students along STEM pathways and tracking of post-RASOR students. Alaska Native and rural Alaska students are a unique and diverse population underrepresented in biomedical science and STEM fields.
DATE: -
TEAM MEMBERS: Janice Straley Ellen Chenowith
resource research Public Programs
This video presents reflections on SCIENCES: Supporting a Community’s Informal Education Needs—Confidence and Empowerment in STEM. SCIENCES brought together Eden Place Nature Center and the Chicago Zoological Society to collaboratively support environmental conservation and lifelong scientific learning in the Fuller Park neighborhood of Chicago. The SCIENCES project began in 2013 and focused on adapting existing educational programs into a suite of environmentally focused science learning opportunities for professional, student, and public audiences in the Fuller Park neighborhood
DATE: