Skip to main content

Community Repository Search Results

resource project Media and Technology
The Cyberlearning and Future Learning Technologies Program funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively. This project brings together two approaches to help K-12 students learn programming and computer science: open-ended learning environments, and computer-based learning analytics, to help create a setting where youth can get help and scaffolding tailored to what they know about programming without having to take tests or participate in rigid textbook exercises for the system to know what they know.

The project proposes to use techniques from educational data mining and learning analytics to process student data in the Alice programming environment. Building on the assessment design model of Evidence-Centered Design, student log data will be used to construct a model of individual students' computational thinking practices, aligned with emerging standards including NGSS and research on assessment of computational thinking. Initially, the system will be developed based on an existing corpus of pair-programming log data from approximately 600 students, triangulating with manually-coded performance assessments of programming through game design exercises. In the second phase of the work, curricula and professional development will be created to allow the system to be tested with underrepresented girls at Stanford's CS summer workshops and with students from diverse high schools implementing the Exploring Computer Science curriculum. Direct observation and interviews will be used to improve the model. Research will address how learners enact computational thinking practices in building computational artifacts, what patters of behavior serve as evidence of learning CT practices, and how to better design constructionist programming environments so that personalized learner scaffolding can be provided. By aligning with a popular programming environment (Alice) and a widely-used computer science curriculum (Exploring Computer Science), the project can have broad impact on computer science education; software developed will be released under a BSD-style license so others can build on it.
DATE: -
TEAM MEMBERS: Shuchi Grover Marie Bienkowski John Stamper
resource project Media and Technology
As part of an overall strategy to enhance learning within informal environments, the Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models poised to catalyze well-integrated interdisciplinary research and development efforts within informal contexts that transform scientific understanding of the food, energy, and water systems (FEWS) nexus in order to improve system function and management, address system stress, increase resilience, and ensure sustainability. This project addresses this aim by using systems thinking and interdisciplinary integration approaches to develop a novel immersive educational simulation game and associated materials designed to highlight the role and importance of corn-water-ethanol-beef (CWEB) systems in supporting the ever increasing demands for food, energy, and water in the United States. The focus on FEWS and sustainable energy aligns well with both the INFEWS program and the sizable sustainability-related projects in the AISL program portfolio. The development and broad dissemination of a multiuser game specific to CWEB systems are particularly innovative contributions and advance for both program portfolios and their requisite fields of study. An additional unique feature of the game is the embedding of varying degrees of economic principles and decision-making along with the nuisances of cultural context as salient variables that influence systems thinking. Of note, a team of computer science, management and engineering undergraduate students at the University of Nebraska - Lincoln will be responsible for the engineering, development, and deployment of the game as their university capstone projects. If successful, this game will have a significant reach and impact on youth in informal programs (i.e., 4-H clubs), high school teachers and students in agriculture vocational education courses, college students, and the public. The impact could extend well beyond Nebraska and the targeted Midwestern region. In conjunction with the game development, mixed-methods formative and summative evaluations will be conducted by an external evaluator. The formative evaluation of the game will focus on usability testing, interest and engagement with a select sample of youth at local 4-H clubs and youth day camps. Data will be collected from embedded in-game survey questionnaires, rating scales, observations and focus groups conducted with evaluation sample. These data and feedback will be used to inform the design and refinement of the game. The summative evaluation will focus on the overall impacts of the game. Changes in agricultural systems knowledge, attitudes toward agricultural systems, interest in pursuing careers in agricultural systems, and decision making will be aligned with the Nebraska State Science Standards and tracked using the National Agricultural Literacy Outcomes (NALOs) assessment, game analytics and pre/post-test measures administered to the evaluation study sample pre/post exposure to the game.
DATE: -
TEAM MEMBERS: Jeyamkondan Subbiah Eric Thompson Deepak Keshwani Richard Koelsch David Rosenbaum
resource project Media and Technology
SciGirls CONNECT is a broad national outreach effort to encourage educators, both formal and informal, to adopt new, research-based strategies to engage girls in STEM. SciGirls (pbskids.org/scigirls) is an Emmy award-winning television program and outreach program that draws on cutting-edge research about what engages girls in science, technology, engineering and math (STEM) learning and careers. The PBS television show, kids' website, and educational outreach program have reached over 14 million girls, educators, and families, making it the most widely accessed girls' STEM program available nationally. SciGirls' videos, interactive website and hands-on activities work together to address a singular but powerful goal: to inspire, enable, and maximize STEM learning and participation for all girls, with an eye toward future STEM careers. The goal of SciGirls is to change how millions of girls think about STEM. SciGirls CONNECT (scigirlsconnect.org) includes 60 partner organizations located in schools, museums, community organizations and universities who host SciGirls clubs, camps and afterschool programs for girls. This number is intended grow to over 100 by the end of the project in 2016. SciGirls CONNECT provides mini-grants, leader training and educational resources to partner organizations. Each partner training session involves educators from a score of regional educational institutions. To date, over 700 educators have received training from over 250 affiliated organizations. The SciGirls CONNECT network is a supportive community of dedicated educators who provide the spark, the excitement and the promise of a new generation of women in STEM careers. Through our partner, the National Girls Collaborative Project, we have networked educational organizations hosting SciGirls programs with dozens of female role models from a variety of STEM fields. The SciGirls CONNECT website hosts monthly webinars, a quarterly newsletter, gender equity resources, SciGirls videos and hands-on activities. SciGirls also promotes the television, website and outreach program to thousands of elementary and middle school girls and their teachers both locally and nationally at various events.
DATE: -
TEAM MEMBERS: Rita Karl