Skip to main content

Community Repository Search Results

resource project Media and Technology
The Tech Museum of Innovation (The Tech) in San Jose, California proposes to partner with NOAA to integrate Science On a Sphere (SOS) into The Tech's Exploration gallery and to facilitate the development of informal and formal learning programs. Exhibits and programs at The Tech focus on the integration of emerging technologies into hands-on visitor experiences. In 2004, The Tech partnered with NOAA, the Maryland Science Center (MSC), and a consortium of national science centers to explore the potential and effectiveness of SOS as a method of engaging and informing the general public about NOAA-related sciences. Initial testing of SOS at the Maryland Science Center revealed that SOS is a visually compelling and engaging medium for conveying complex scientific information to museum visitors. Ninety-eight percent of visitors tested regarded a facilitated SOS program as a good or excellent experience with strong visitor retention suggesting the potential of SOS as a compelling visitor tool. However, when the experience was not facilitated this retention dropped dramatically. Support from NOAA will enable The Tech to test SOS and NOAA data in a number of formats to determine the most effective ways to utilize this incredible technology. The results of this evaluation will be shared with other museums using SOS to improve its reach in teaching informal audiences and promoting interest in both STEM content and NOAA research. The SOS exhibit will bring together scientists, technologists, informal education specialists, and young users to unlock the educational potential of NOAA's datasets and further NOAA's educational plan. Hands-on experiences using SOS will engage visitors in meaningful explorations of NOAA data. The Tech Museum will make SOS accessible to people of all ages, backgrounds, and educational levels. All panel text, audio, and captions will be presented in both English and Spanish to allow greater accessibility for local audiences. SOS will provide the programming platform upon which to explore the educational opportunities of this gallery as it illustrates how data collected with remote sensing technologies is helping us understand and make predictions about our dynamic environment and the future of our planet. SOS will illustrate how these data collecting technologies assist us in developing our knowledge about our planet and its solar system.
DATE: -
TEAM MEMBERS: Greg Brown
resource project Media and Technology
Using the relative strengths of each museum, the Science On a Sphere Partnership between the Maryland Science Center and the Science Museum of Minnesota has developed two complementary exhibit approaches to Science On a Sphere (SOS). Audiences interacting with SOS are able to observe global connections in geophysical phenomena not possible with any two dimensional representation of the Earth. The goal of the project is for museum visitors, particularly underserved audiences, to comprehend how human activities are influencing global processes now and might do so in the future. The project also tests new partnership models for working with NOAA and other science research organizations to broaden the educational impact on all groups.
DATE: -
TEAM MEMBERS: Patrick Hamilton Roberta Cooks
resource project Public Programs
The primary goal of MAST-3 is to increase the diversity of students, particularly those from underrepresented groups, electing careers in NOAA related marine sciences. This is done through a multidisciplinary program that engages students in NOAA-related marine research, and explores marine policy, the heritage of African Americans and Native Americans in the coastal environment, and seamanship. MAST students use the Chesapeake Bay to understand efforts to protect, restore and manage the use of coastal and ocean resources through an ecosystem approach to management. To do this, Hampton University has formed partnerships with various NOAA labs/sites, several university laboratories, the USEPA, various museums, the Chesapeake Bay Foundation, and the menhaden fishing industry.
DATE: -
TEAM MEMBERS: Benjamin Cuker
resource project Public Programs
This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE: -
TEAM MEMBERS: Kurt Thoroughman Gregory DeAngelis Randy Buckner Steven Petersen Dora Angelaki
resource research Public Programs
"The Business of Museums" was presented by Mac West at the 2006 IAAPA. It examines the evolution of museum business models.
DATE:
TEAM MEMBERS: Robert West
resource research Media and Technology
An effective communication of astronomy cannot take place without considering the view the general public has on the universe. Through a number of narrative interviews with non-experts, a research was carried out on personal cosmologies, to outline the public’s heterogeneous astronomical imagery. The result is a bundle of conceptions, perceptions and attitudes which are useful to interpret the difficulties the public experiences when facing the contents of astrophysics, and to establish an ongoing dialogue.
DATE:
TEAM MEMBERS: Stefano Giovanardi
resource research Public Programs
In May 2004 the Balì Museum, Planetarium and interactive science museum, was opened to the public in Italy: 35 hands-on exhibits designed according to the interactive tradition of the Exploratorium in San Francisco, an astronomic observatory for educational activities, a Planetarium with 70 places. With a total investment of about three million euros, about two thirds of which were spent on restructuring the splendid eighteenth-century villa in which it is housed, the undertaking may be considered a small one in comparison with other European science centres. Three million euros: perhaps
DATE:
TEAM MEMBERS: Paola Rodari
resource project Public Programs
This research oriented project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. It represents a partnership among The City College of New York (CCNY), the New York Hall of Science (NYHOS), and the City University of New York Center for Advanced Study in Education (CUNY-CASE). It integrates the Science Career Ladder, a sustained program of informal science teaching training and employment at the NYHOS, with the CCNY science teacher preparation program. The longitudinal and comparative research study being conducted is designed to examine and document the effect of this integrated program on the production of urban science teachers. Outcomes from this study include a new body of research related to the impact of internships in science centers on improving classroom science teaching in urban high schools. Results are being disseminated to both the informal science education community (through the Association for Science and Technology Centers and the Center for Informal Learning in Schools, an NSF supported Center for Learning and Teaching situated at the San Francisco Exploratorium) and the formal education community (through the National Science Teachers Association and the American Educational Research Association).

The Science Career Ladder program engages undergraduates as inquiry-based interpreters (Explainers) for visitors to the NY Hall of Science. Integrating this experience with a formal teacher certification program enables participants to coordinate experiences in the science center, college science and education classes, and K-12 classrooms. Participants receive a license to teach science upon graduating. The approach has its theoretical underpinnings in the concept of situated learning as noted by Kirshner and Whitson (1997, Situated Cognition: Social, Semiotic and Psychological Perspectives, Mahwah, NJ: Erlbaum). Through apprenticeship experiences, situated learning recreates the complexity and ambiguity of situations that learners will face in the real world. Science centers provide a potentially ideal setting for situational learning by future teachers, allowing them to develop, exercise and refine their science teaching and learning skills as noted by Gardner (1991, The Unschooled Mind, New York: Basic Books).

There is a well-documented shortage of science teachers in urban school districts. The causes of this shortage relate to all phases of the teacher professional continuum, from recruitment through training and retention. At the same time, the demographic composition of American teachers is increasingly out of synch with the demographics of the student population, raising concerns that a critical shortage of role models may be at hand, contributing to a worsening situation in urban schools. In the face of these challenges many innovative teacher recruitment and teacher preparation programs have been developed to augment traditional pathways to teaching. These programs range from high school academies for students expressing an interest in teaching to the recruitment and training of individuals making mid-life career changes. The CLUSTER program described above represents a new alternative. There are more than 250 science centers in the United States. Many of these have extensive youth internship programs and collaborative relationships with local colleges. Therefore, the proposed model is widely applicable.
DATE: -
resource research Media and Technology
Computer-supported collaborative learning (CSCL) is an emerging branch of the learning sciences concerned with studying how people can learn together with the help of computers. As we will see in this essay, such a simple statement conceals considerable complexity. The interplay of learning with technology turns out to be quite intricate. The inclusion of collaboration, computer mediation, and distance education has problematized the very notion of learning and called into question prevailing assumptions about how to study it.
DATE:
TEAM MEMBERS: Gerry Stahl Timothy Koschmann Dan Suthers
resource research Public Programs
In recent years, novel paradigms of computing have emerged, which enable computational power to be embedded in artefacts and environments in novel ways. These developments may create new possibilities for using computing to enhance learning. This paper presents the results of a design process that set out to explore interactive techniques, which utilized ubiquitous computer technology, to stimulate active participation, involvement and learning by children visiting a museum. Key stakeholders, such as museum curators and docents, were involved throughout the process of creating the exhibition
DATE:
TEAM MEMBERS: Tony Hall L. Banon
resource research Public Programs
This essay begins by considering museum studies in relationship to curriculum studies and new museology. The author notes that traditional museum and school learning modes have focused more on measurement than meaning, while curriculum studies and new museology urge a broader exploration of the social purposes of education. Drawing on the work of Myles Horton and the Highlander Folk School, popular education is offered as a model for exhibitors and other museum educators. The essay closes with examples from an exhibit project by graduate students. This section shares analyses of traditional
DATE:
TEAM MEMBERS: Therese Quinn
resource research Public Programs
Informal and formal educators are scrutinizing particular representations of the world more often and asking whose voices are being heard and which interpretations concur or challenge learners' life worlds. Curriculum theory has emerged as a significant partner to theorize museum education practice to address ethics, equity, and accountability. The growing relationship between museum education and curriculum theory is grounded in five common concerns for shaping and sharing knowledge. The concerns include knowledge production, adherence to a democratic ideal, the art and act of choosing
DATE:
TEAM MEMBERS: Julia Rose