Skip to main content

Community Repository Search Results

resource project Exhibitions
RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
DATE: -
TEAM MEMBERS:
resource project Public Programs
Communities with the highest risk of climate change impacts may also be least able to respond and adapt to climate change, which highlights a specific need for inclusive Science, Technology, Engineering, and Mathematics (STEM) strategies. This Pilot and Feasibility project builds on the success of US Cooperative Extension Service programs that empower volunteers to conduct outreach in their own communities. It focuses on climate change, and seeks to co-design an informal STEM climate science curriculum, called Climate Stewards, in collaboration with community members from groups often underrepresented in STEM, including indigenous and Latinx communities, as well as rural women. The project is designed to strengthen community awareness as well as prioritize community voices in climate change conversations. The knowledge and skills obtained by Climate Stewards and their communities will allow for more involvement in decisions related to climate adaptation and mitigation in their communities and beyond. After establishing a proof of concept, the project seeks to expand this work to more rural and urban communities, other communities of color, and additional socioeconomically disadvantaged communities.

Grounded in the theory of diffusion of innovation as a means for volunteers to communicate information to members of a social system, this project seeks co-create a retooled Climate Stewards curriculum using inclusive and adaptive strategies. Community collaboration and involvement through new and existing partnerships, focus groups, and meetings will determine what each community needs. During the program design phase, community members can share their concerns regarding climate change as well as the unique characteristics and cultural perspectives that should be addressed. The collaboration between extension and education leverage resources that are important for developing a robust implementation and evaluation process. This project is expected to have a significant influence on local and national programs that are looking to incorporate climate change topics into their programming and/or broaden their reach to underrepresented communities. The hypotheses tested in this project describe how inclusion-based approaches may influence competencies in STEM topics and their impact on communities, specifically willingness to take action. Hypothesis 1: STEM competencies in climate issues increase with interactive and peer learning approaches. Hypothesis 2: Community participation in the co-creation of knowledge about climate change, by integrating their values and objectives into the climate change education program, increases people's motivation to become engaged in climate change adaptation and mitigation strategies.

This Pilot and Feasibility project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Patricia Townsend Roslynn McCann Melissa Kreye Arthur Nash
resource project Professional Development, Conferences, and Networks
Developing solutions to large-scale collective problems -- such as resilience to environmental challenges -- requires scientifically literate communities. However, the predominant conception of scientific literacy has focused on individuals, and there is not consensus as to what community level scientific literacy is or how to measure it. Thus, a 2016 National Academies of Sciences, Engineering, and Medicine report, “Science Literacy: Concepts, Contexts, and Consequences,” stated that community level scientific literacy is undertheorized and understudied. More specifically, the committee recommended that research is needed to understand both the i) contexts (e.g., a community’s physical and social setting) and ii) features of community organization (e.g., relationships within the community) that support community level science literacy and influence successful group action. This CAREER award responds to this nationally identified need by iteratively refining a model to conceptualize and measure community level scientific literacy. The model and metrics developed in this project may be applied to a wide range of topics (e.g., vaccination, pandemic response, genetically-modified foods, pollution control, and land-use decisions) to improve a community’s capacity to make scientifically-sound collective decisions. This CAREER award is funded by the Advancing Informal STEM Learning (AISL) and the EHR CORE Research (ECR) programs. It supports the AISL program goals to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It supports the ECR program goal to advance relevant research knowledge pertaining to STEM learning and learning environments.

The proposed research will conceptualize, operationalize, and measure community level scientific literacy. This project will use a comparative multiple case study research design. Three coastal communities, faced with the need to make scientifically-informed land-use decisions, will be studied sequentially. A convergent mixed methods design will be employed, in which qualitative and quantitative data collection and analyses are performed concurrently. To describe the i) context of each community case, this project will use qualitative research methods, including document analysis, observation, focus groups, and interviews. To measure the ii) features of community organization for each community case, social network analysis will be used. The results from this research will be disseminated throughout and at the culmination of the project through professional publications and conference presentations as well as with community stakeholders and the general public. The integrated education activities include a professional learning certificate for informal science education professionals and STEM graduate students. This certificate emphasizes high-quality community-engaged scholarship, placing students with partners such as museums, farmer’s markets, and libraries, to offer informal learning programs in their communities. This professional learning program will be tested as a model to provide training for STEM graduate students who would like to communicate their research to the public through outreach and extension activities.
DATE: -
TEAM MEMBERS: K.C. Busch
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource project Public Programs
This innovations in development project will develop and study the Wéetespeme Stewardship Program (Wéetespeme: “I am of this land”). Tribal led, the project supports and studies climate science learning experiences grounded in traditional ecological knowledge, culturally relevant pedagogy, and land education pedagogy. Nez Perce high-school youth and college-age adults will choose specific species and places; work with tribal resource management offices to learn to monitor, assess, and mitigate climate impacts; and receive mentorship from tribal elders, as they co-develop climate-science adaptive management plans for local concerns. Adaptive management plans may include topics such as: drought and extreme weather impacts, shifts in animal populations and migration patterns, cultivating traditional foods, and managing important cultural sites. The Tribal research team will collaborate with curriculum developers and Indigenous graduate student(s) from the University of Idaho and Northwest Youth Corps to explore how a STEM curriculum centered on cultural identity and traditional knowledge can align with Indigenous youths’ identities, resource responsibilities, and understanding and interest in STEM career pathways within the Tribe and in the region. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understanding of deeper learning by participants. This project’s approach to curriculum development, and youths’ identity and career interest development, will contribute to the informal STEM learning field’s nascent understanding of Tribal-driven education efforts, and approaches to blending or bridging traditional ecological knowledge and Western ways of knowing. With co-funding from the Directorate of Geosciences’ (GEO), this project will further advance efforts related to the application of traditional ecological knowledge to the geosciences, including Indigenous workforce development opportunities and research experiences for Indigenous graduate students.

Over a two-year duration, the study will address two research questions. 1) How and in what ways does a culturally relevant out-of-school curriculum support Indigenous youths’ understanding of their own identity, resource responsibility, and possible career pathways, including those on Tribal land? 2) How and in what ways does a culturally relevant out-of-school curriculum develop Indigenous youths’ ability to monitor and address climate change impacts, to protect, preserve and recover land relationships that are central to their cultural identities and values? Thirty-two college-age young adults and high-school youth (sixteen of each age group) will participate in the Wéetespeme Stewardship Program and research study. Indigenous research methodologies will guide the approach to investigating and sharing Indigenous youths’ understanding of their own identity, resource responsibility, possible career pathways, and learning experiences within the Wéetespeme Stewardship Program activities. Two Indigenous graduate students will play a central role in conducting the research, supporting systemic impacts within, and beyond, the Tribe. Methods will be embedded in learners’ experiences and will include field journals, adaptive management plans, story maps, and talk circles. Youth will also participate as research partners: understanding the research questions, assisting with the analysis, contributing to interpretation of the findings, and co-authoring manuscripts that share their stories and this work. The informal STEM curriculum will be shared regionally, allowing for Tribes in the plateau region to benefit from culturally relevant approaches youth engagement to support climate resilience. The results of the research will also be shared more broadly, contributing to the emerging knowledge-base about the ways that cultural practices and values, guided by land education pedagogy and the mentorship of traditional ecological knowledge keepers, and embedded in informal STEM learning experiences, can contribute to Indigenous youths’ identities and understanding of, and investment in, local and meaningful environmental resources and STEM career pathways.
DATE: -
TEAM MEMBERS: Nakia Williamson Karla Bradley Eitel Jeff Parker Josiah Pinkham
resource project Public Programs
This Innovations in Development project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Specifically, this project connects Native Hawaiian youth ages 12-17 and their family members to STEM by channeling their cultural relationship with ʻāina, the sustaining elements of the natural world including the land, sea, and air. This project seeks to: broaden participation of Native Hawaiian youth who have been historically underrepresented in STEM; actively uphold Native Hawaiian ways of knowing and traditional knowledge; articulate the science rooted in cultural wisdom; and bring STEM into the lives of participants as they connect to the ʻāina. In partnership with six ʻāina-based community organizations across Hawaiʻi, this project will develop, implement, and study ʻāina-centered environmental education activities that explore solutions to local environmental problems. For example, in one module youth and their families will explore of a section of a nearby stream; identify and discuss the native, non-native, and invasive species; remove invasive species from a small section of the stream and make observations leading to discussions of unintended consequences and systemic impacts; ultimately, learners will meet at additional local waterways to engage in similar explorations and discussions, transferring their knowledge to understanding the impacts of construction on local streams and coral reefs. To this effort, the community-based organizations bring their expertise in preserving Hawaiian culture and sustainable island lifestyle, including rural and urban systems such as farming and irrigation traditions and the restoration of cultural sites. University of Hawai’i faculty and staff bring expertise in Environmental Science, Biology, Hawaiian Studies and Problem-Based Learning Curriculum Development. This project further supports organizational learning and sharing among the six community-based organizations. Grounded in Hawaiian ʻAʻo, where learning and teaching are the same interaction, community-based organizations will create a Community of Practice that will co-learn Problem-Based Learning pedagogy; co-learn and engage in research and evaluation methods; and share experiential and traditional knowledge to co-develop the ʻāina-based environmental education activities.

This project is uniquely situated to study the impact of community-led culturally relevant pedagogy on Hawaiian learners’ interests and connections to environmental science, and to understand ʻāina-based learning through empirical research. Research methods draw on Community-Based Participatory Research and Indigenous Research Methods to develop a collaborative research design process incorporated into the project’s key components. Community members, researchers, and evaluators will work together to examine the following research questions: 1) How does environmental Problem-Based Learning situate within ʻāina-based informal contexts?; 2) What are the environmental education learning impacts of ʻāina-based activities on youth and family participants?; and 3) How does the ʻāina-centered Problem-Based Learning approach to informal STEM education support STEM knowledge, interest and awareness? The evaluation will employ a mixed-methods participatory design to explore program efficacy, fidelity, and implementation more broadly across community-based sites, as well as program sustainability within each community-based site. Anticipated project outcomes are a 15-week organizational learning and sharing program with six ʻāina-based community organizations and 72 staff; the design and implementation of 18 activities to reach 360 youth and at least one of their family members; and the launch of an ʻāina-based STEM Community of Practice. The project’s research and development process for ʻāina-centered environmental education activities will be shared broadly and provide a useful example for other organizations locally and nationally working in informal settings with Native or Indigenous populations.
DATE: -
TEAM MEMBERS: Lui Hokoana Hokulani Holt-Padilla Jaymee Nanasi Davis
resource project Public Programs
Creating science education that can contribute to cultivating just, culturally thriving, and sustainable worlds is an important issue of our time. Indigenous peoples have persistently been under-represented in science reproducing inequalities in a myriad of ways from educational attainment, participation in and contributing to innovations in foundational knowledge, to effective policy making that upholds and respects Indigenous sovereignty. The development of models of science education that attend to intersections of knowledge and development, socio-scientific decision-making and civic leadership, and the complexities and contradictions of these realities, is imperative. This five-year Innovations in Development project broadens participation and strengthens infrastructure and capacity for Indigenous learners to meet, adapt to, and lead change in relation to the socio-ecological challenges of the 21st century. The project engages multi-sited community-based design studies to develop and research the impacts of Indigenous informal field-based science education with three Indigenous leadership communities from the Pacific Northwest and the Great Lakes. This project will have broader impacts through model development, building infrastructure to transform the capacity of informal field-based science education, and will produce cutting edge foundational knowledge about pressing 21st century issues with a particular focus on Indigenous communities. The project increases Indigenous participation in research through 1) engagement of Indigenous community members as research assistants, 2) training of Indigenous graduate fellows, and post-doctoral fellows, and 3) supporting the careers of more junior Indigenous scholars.

This research seeks to identify key design features of an Indigenous field (land/water) based model of science education and to understand how learners’ and educators’ reasoning, deliberation, decision-making, and leadership about complex socio-ecological systems and community change evolve in such learning environments. The project also examines key aspects of co-design and partnership with Tribal communities and how these methods of co-production of new science enable new capacities for systems transformation. This multi-layered project is organized through 3 panels of studies including: Panel 1) community-based design experiments to develop and refine a model of Indigenous informal science education; Panel 2) co-design and implementation of professional learning programs for Indigenous informal science education; and Panel 3) foundational studies in cognition and learning with respect to socio-ecological systems thinking and the impact on learning and instructional practices. Of particular importance in this research is the rigorous development and articulation of effective pedagogical practices and orientations. More broadly, findings will have clear implications for theories of cognitive development, deliberation and environmental decision making and especially those pertaining to how knowledge is shaped by culture and experience.

This project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Filiberto Barajas-Lopez Anna Lees Megan Bang Anna Lees Filiberto Barajas-Lopez
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project aims to understand ways to empower Latinx families (adult caregivers) to feel confident in their ability to support their middle school-aged girls in science and engineering activities. The project involves seven weeks of family programming around rockets or urban farming, as well as separate conversation groups for adult family members and girls. The project is relevant for several reasons: females and Latinx individuals are both underrepresented in science, technology, engineering, and math (STEM) coursework and careers; girls tend to lose interest in STEM by middle school age; and adult family members may have an impact on their children's attitudes and interests. The project partners with school districts and nonprofit organizations in Arizona and California.

This multidisciplinary project's priority is broadening participation, with a focus on increasing Latina girls' science and engineering interests through Family Project-Based Learning Activities, Conversation Groups, and a cultivated Community of Learners. It is based on the frameworks of Social Cognitive Career Theory and Community Cultural Wealth. The project aims to empower families (adult caregivers) to feel confident in their ability to support their daughters in science and engineering activities, which is often low especially among Latinx parents. The project will develop and evaluate two out-of-school enrichment methods for aiding families in encouraging and supporting their daughters in science: Family Problem-Based Learning Activities, which focus on rockets and urban farming, and Conversation Groups, which provide information and discussion for separate groups of parents and girls. A series of pilot studies will be conducted with 80 families to iteratively evaluate and improve the materials and procedure prior to the main study with 180 families, featuring a factorial design with a control group.

The materials developed and research findings may inform similar projects, especially those for students from culturally and linguistically diverse backgrounds and projects seeking to enhance the role of families in learning. The hypothesis guiding the project is that the greatest gains will be produced with the synergistic combination of enrichment methods. Another component that can potentially have broad impact is working to create environments where Community Cultural Wealth is recognized and enhanced through interactions of different families, creating Communities of Learners. This can inform projects that recognize the importance of community and/or that seek to use culture as an asset. The proposed study will engage three geographically distributed universities and several community partners. It will also provide university students and community leaders opportunities for work on instructional design, implementation, and research. The team will disseminate their findings and methods through multiple avenues to reach researchers, parents, leaders, curators, and educators in informal and K-12 settings.

This Research in Service to Practice award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Katherine Short-Meyerson Peter Rillero Peter Meyerson Margarita Jimenez-Silva Christopher Edwards
resource project Public Programs
Recognizing that race can influence African American youths' perception of which academic disciplines and careers are available to them, this pilot study will explore how African American youths' physical and social communities can be leveraged to support the evolution of their STEM identity and their ability to recognize their potential as scientists. Unfortunately, many of these youths live in communities that are void of critical resources that research has demonstrated time and time again are critical for success in STEM disciplines and careers. This lived reality for many African American youth is the direct result of long-standing disparities in access and opportunities, fueled by racial socialization and biased institutional structures. This pilot will empower youth to recognize these disparities and use science to provide solutions. One perilous societal disparity experienced in many predominately African American communities is the lack of access to fresh produce and healthy food. As a mechanism for potential resolution, this project will consider the utility of community gardens to address this important community need and as a strategy to engage youth in STEM content and skill development. While this notion is not novel to NSF, the intent to utilize an augmented reality (AR) storytelling platform for data collection and project experiences is innovative. This technology will also provide a space for participants to share their work with each other and their broader communities. To our knowledge, this pioneering approach has not been previously piloted in this context. In addition, the pilot will engage multiple youth serving community-based organizations such as park and recreation centers and faith-based organizations in this work, which is also innovative. This is significant, as youth serving community-based organizations are often play important role in the social, educational, and cultural lives of youth and their families in communities. These organizations are often at the heart of the community, figuratively and literally. If successful, this pilot could be transformative and provide a strong basis to support similar work in other communities.

Over the two-year project duration, eighty African American youth ages 11 -14 will participate in the year-long program, across three youth-serving, community-based organizations at four sites. They will be exposed to relevant agricultural, geological, engineering and technological content through a newly developed curriculum called "Cultivating My Curriculum." Community mentors and undergraduate role models will facilitate the instruction and hands-on experiences in the garden and with the AR platform. A capstone event will be a held for the participants and community to convene to learn more about the results of the pilot and share recommendations with community leaders for improving the disparities identified during the pilot. The research component will focus on: (a) the impact of the sociocultural theoretical framework grounding the work on youths' STEM identities, (b) the integration of the AR tool, and (c) mentorship. Formative and summative evaluation will take place through focus groups, surveys, journals, and youth storytelling. Ultimately, the project endeavors to advance the narrative that African Americans are scientists and that science can be used to improve the lives of African Americans and other groups challenged by structural and racial disparities.

This pilot study is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harrison Pinckney David Boyer Barry Garst Dilrukshi Thavarajah
resource project Public Programs
Mentoring is a widely accepted strategy for supporting positive socioemotional and cognitive development across a variety of sectors including education, workforce development, and the justice system. An estimated 2.5 million volunteer mentors support youth development in the United States each year. However, there is broad concern that practice has outpaced empirical testing, with significant gaps in the research literature on important modifiers of mentoring relationships and their impacts. This is especially true for mentoring youth ages 10-14 in STEM. Studying highly successful programs may be one way to better understand the role of mentoring and moderators of mentoring effectiveness. The Science Club, a community-based STEM mentoring program for middle-grade youth in the Chicago area, will provide multiple sites for a research study to examine three important issues for advancing theory and practice for STEM mentoring. These issues include (1) understanding STEM mentoring for youth in the middle grades, (2) identifying outcomes and motivations for scientist mentors to more fully participate in mentoring programs, and (3) examining a model of middle-school-focused STEM mentoring collaboration.

Through a series of three studies, the team will investigate which elements of the mentoring relationships are associated with the demonstrated STEM identity gains in youth participants. The work will also contribute much-needed data on the impact of STEM mentoring relationships on the mentors themselves. Study 1 is designed as a retrospective study of program alumni, both youth and mentors, about the nature and extent of each their STEM identity shifts during their time in Science Club. A purposeful sample of 160+ youth and 100+ mentor alumni will participate. Study 2 is a prospective study of three consecutive cohorts of active Science Club participants, built on data and findings from Study 1. In Study 2, the team will design and implement a new Identity-Focused Mentoring Observation Instrument specifically aimed at exploring the nature and quality of mentoring relationships and their role in science identity development longitudinally. Three independent cohorts of 40 youth and 20 mentors each will participate. Study 3 is retrospective, examining how participating individuals and organizations perceive and are impacted by mentoring. The three studies employ a mixed methods approach utilizing surveys, observations, individual interviews, and document review.

This proposal will fill critical gaps in the mentoring literature regarding the formative middle school years through novel, empirical research. Building on the current literature and practice, outcomes of the work will inform practice and enhance knowledge-building in the field on both mentoring relationships and the collective impact of university-school-OST partnerships.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Michael Kennedy Rabiah Mayas Bernadette Sanchez
resource project Public Programs
American Indian and Alaska Native communities continue to disproportionately face significant environmental challenges and concerns as a predominately place-based people whose health, culture, community, and livelihood are often directly linked to the state of their local environment. With increasing threats to Native lands and traditions, there is an urgent need to promote ecological sustainability awareness and opportunities among all stakeholders within and beyond the impacted areas. This is especially true among the dozens of tribes and over 50,000 members of the Coast Salish Nations in the Pacific Northwest United States. The youth within these communities are particularly vulnerable. This Innovations in Development project endeavors to address this serious concern by implementing a multidimensional, multigenerational model aimed at intersecting traditional ecological knowledge with contemporary knowledge to promote: (a) environmental sustainability awareness, (b) increased STEM knowledge and skills across various scientific domains, and (c) STEM fields and workforce opportunities within Coast Salish communities. Building on results from a prior pilot study, the project will be grounded on eight guiding principles. These principles will be reflected in all aspects of the project including an innovative, culturally responsive toolkit, curriculum, museum exhibit and programming, workshops, and a newly established community of practice. If successful, this project could provide new insights on effective mechanisms for not only promoting STEM knowledge and skills within informal contexts among Coast Salish communities but also awareness and social change around issues of environmental sustainability in the Pacific Northwest.

Over a five-year period, the project will build upon an extant curriculum and findings codified in a pilot study. Each aspect of the pilot work will be refined to ensure that the model established in this Innovations and Development project is coherent, comprehensive, and replicable. Workshops and internships will prepare up to 200 Coast Salish Nation informal community educators to implement the model within their communities. Over 2,500 Coast Salish Nation and Swinomish youth, adults, educators, and elders are expected to be directly impacted by the workshops, internships, curriculum and online toolkit. Another 300 learners of diverse ages are expected to benefit from portable teaching collections developed by the project. Through a partnership with the Washington State Burke Natural History Museum, an exhibit and museum programming based on the model will be developed and accessible in the Museum, potentially reaching another 35,000 people each year. The project evaluation will assess the extent to which the following expected outcomes are achieved: (a) increased awareness and understanding of Indigenous environmental sustainability challenges; (b) increased skills in developing and implementing education programs through an Indigenous lens; (c) increased interest in and awareness of the environmental sciences and other STEM disciplines and fields; and (d) sustainable relationships among the Coast Salish Nations. A process evaluation will be conducted to formatively monitor and assess the work. A cross cultural team, including a recognized Coast Salish Indigenous evaluator, will lead the summative evaluation. The project team is experienced and led by representatives from the Swinomish Indian Tribal Community, Oregon State University, Garden Raised Bounty, the Center for Lifelong STEM Learning, the Urban Indian Research Institute, Feed Seven Generations, and the Burke Museum of Natural History and Culture.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Jamie Donatuto Diana Rohlman Elise Krohn Valerie Segrest Rosalina James
resource project Media and Technology
Fostering greater inclusion in science creates benefits for both science and society. In this Innovations and Development project, the University of Utah will investigate how to sustain and scale the STEM Ambassador Program (STEMAP), begun in 2016 with AISL funding. STEMAP developed an innovative process to train scientists to engage members of the public, who cannot or do not gain access to science via conventional science education venues (such as museums, schools, zoos), by implementing activities in non-traditional settings. The 65 scientists trained by the initial STEMAP effort effectively engaged in over 45 settings including an affordable housing development, a youth residential treatment center, a state prison, a cooking class, a daycare facility, and several senior centers. The number of scientists applying to the program quickly exceeded STEMAP's capacity. Other institutions expressed interest in replicating the training. This project will explore strategies for scaling and sustaining public engagement training to support more scientists who can engage more people in more venues. Outcomes will serve to inform the broader implementation of STEMAP and the efforts of other public engagement programs, many of which face similar scaling and sustainability challenges.

Scaling and sustaining public engagement of science (PES) programs is a central challenge for many in the informal science learning community. This project will explore strategies to scale and sustain the STEM Ambassador Program. Research questions include: (1) How do different program formats increase or restrict program capacity and engagement outcomes? (2) What benefits accrue to scientists and their institutions by participating in public engagement in science activities that might serve as motivators to continue these activities? (3) Are funding and organizational models developed in business and other professional settings applicable to sustaining these programs? To address scalability, this project will explore the effectiveness of three dissemination formats: (1) the creation of a mentorship program for in-person trainees, (2) a train-the-trainer approach, and (3) online training with in-person mentorship. The project team will create an evaluation toolkit with participant surveys, rubrics for observers, and "on-the-spot" assessment tools developed under AISL Award 1811022 to assess the effectiveness of engagement activities delivered by trainees in each of the three formats. To address sustainability, the project team will document the values of public engagement training to both the participating scientists and their institutions via surveys and interviews. Consultants from the business sectors will create a PES Campus Council to explore possible financial, organizational, and leadership plans that will help sustain engagement efforts. Outcomes will be published in peer-reviewed journals and compiled into a dissemination framework to inform actions to scale and sustain STEMAP and other public engagement of science programs to engage more hard-to-reach audiences. Inverness Research will serve as the project's external evaluator.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -