Skip to main content

Community Repository Search Results

resource project Exhibitions
RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
DATE: -
TEAM MEMBERS:
resource research Public Programs
Researchers and practitioners have identified numerous outcomes of place-based environmental action (PBEA) programs at both individual and community levels (e.g., promoting positive youth development, fostering science identity, building social capital, and contributing to environmental quality improvement). In many cases, the primary audience of PBEA programs are youth, with less attention given to lifelong learners or intergenerational (e.g., youth and adult) partnerships. However, there is a need for PBEA programs for lifelong learners as local conservation decisions in the United States
DATE:
TEAM MEMBERS: Laura Cisneros Jonathan Simmons Todd Campbell Nicole Freidenfelds Chester Arnold Cary Chadwick David Dickson David Moss Laura Rodriguez John Volin
resource research Public Programs
Making as a term has gained attention in the educational field. It signals many different meanings to many different groups, yet is not clearly defined. This project’s researchers refer to making as a term that bears social and cultural impact but with a broader more sociocultural association than definitions that center making in STEM learning. Using the theoretical lenses of critical relationality and embodiment, our research team position curriculum as a set of locally situated activities that are culturally, linguistically, socially, and politically influenced. We argue that curriculum
DATE:
TEAM MEMBERS: Veronica Oguilve Wen Wen Em Bowen Yousra Abourehab Amanda Bermudez Elizabeth Gaxiola Jill Castek
resource research Media and Technology
This short (approximately 2-3 hours), self-paced non-credit learning module is designed for those new to conducting research in communities impacted by energy development. You will learn about the concept of “research fatigue” and become more prepared for fieldwork by learning what to expect when you visit energy-impacted communities. Access is free for students, researchers and those living in or serving communities impacted by energy development. Participants who complete the online course can a digital badge called Understanding Research Fatigue. Earners of this certification will
DATE:
TEAM MEMBERS: Suzi Taylor Julia Hobson Haggerty Kristin Smith Ruchie Pathak
resource research Public Programs
This workbook / planning guide was designed as an outreach tool to support students and early-career researchers who are studying the social impacts of energy development and wish to better understand and mitigate “research fatigue,” a state in which citizens of a community who are already experiencing massive change may be exhausted by additional attention from researchers, the media and others outside the community. The workbook can be used as a stand-alone resource or as a complement to the Understanding Research Fatigue online module (https://eu.courses.montana.edu/CourseStatus.awp
DATE:
TEAM MEMBERS: Suzi Taylor Julia Hobson Haggerty Jeffrey Jacquet Gene Theodori Kathryn Bills Walsh
resource project Public Programs
As new technologies continue to dominate the world, access to and participation in science, technology, engineering, mathematics (STEM), and computing has become a critical focus of education research, practice, and policy. This issue is exceptionally relevant for American Indians, who remain underrepresented as only 0.2% of the STEM workforce, even though they make up 2% of the U.S. population. In response to this need, this Faculty Early Career Development Program (CAREER) project takes a community-driven design approach, a collaborative design process in which Indigenous partners maintain sovereignty as designers, to collaboratively create three place-based storytelling experiences, stories told in historical and cultural places through location-based media. The place-based storytelling experiences will be digital installations at three culturally, politically, and historically significant sites in the local community where the public can engage with Indigenous science. The work is being done in partnership with the Northwestern Band of the Shoshone Nation (NWBSN).

The principal investigator and the NWBSN will investigate: (a) what are effective strategies and processes to conduct community-driven design with Indigenous partners?; (b) how does designing place-based storytelling experiences develop tribal members' design, technical, and computational skills?; (c) how does designing these experiences impact tribal members' scientific, technological, and cultural identities? The goals are to establish a process of community-driven design, build infrastructure to support this process, and understand how this methodological approach can result in culturally-appropriate ways to engage with science through technology. The principal investigator will work with the tribe to complete three intergenerational design cycles (a design cycle is made up of multiple design iterations). Each design cycle will result in one place-based storytelling experience. The goal is to include roughly 15 youth (ages 6-18), 10 Elders, and 10 other community members (i.e. members ages 18-50, likely parents) in each design cycle (35 tribal members total). Some designers are likely to participate in multiple design cycles. The tribe currently has 48 youth ages 6-18 and the project aims to engage at least 30 across all three design cycles. Over four years of designing three different experiences, the NWBSN aims to recruit at least 100 tribal members (just under 20% of the tribe) to make contributions (as designers, storytellers, or to provide cultural artifacts or design feedback).

This CAREER award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Breanne Litts
resource project Public Programs
Cities and communities in the U.S. and around the world are entering a new era of transformational change, in which their inhabitants and the surrounding built and natural environments are increasingly connected by smart technologies, leading to new opportunities for innovation, improved services, and enhanced quality of life. The Smart and Connected Communities (SCC) program supports strongly interdisciplinary, integrative research and research capacity-building activities that will improve understanding of smart and connected communities and lead to discoveries that enable sustainable change to enhance community functioning. This project is a Research Coordination Network (RCN) that focuses on achieving SCC for medium/small size, remote, and rural communities through a polycentric (multiple centers) integrated policy, design, and technology approach. The communities served by the RCN have higher barriers to information, resources, and services than larger urban communities. To reduce this gap, the PIs propose to develop need-based R&D pipelines to select solutions with the highest potential impacts to the communities. Instead of trying to connect under-connected communities to nearby large cities, this proposal aims to develop economic opportunities within the communities themselves. This topic aligns well with the vision of the SCC program, and the proposed RCN consists of a diverse group of researchers, communities, industry, government, and non-profit partners.

This award will support the development of an RCN within the Commonwealth of Virginia which will coordinate multiple partners in developing innovations utilizing smart and connected technologies. The goal of the research coordination network is to enable researchers and citizens to collaborate on research supporting enhanced quality of life for medium, small, and rural communities which frequently lack the communication and other infrastructure available in cities. The research coordination network will be led by the University of Virginia. There are 14 partner organizations including six research center partners in transportation, environment, architecture and urban planning, and engineering and technology; two State and Industry partners (Virginia Municipal League and Virginia Center for Innovative Technology); four community partners representing health services (UVA Center for Telemedicine), small and remote communities (Weldon Cooper Center), neighborhood communities (Charlottesville Neighborhood Development), and urban communities (Thriving Cities); and two national partners which support high speed networking (US-Ignite) and city-university hubs (MetroLab). Examples of research coordination include telemedicine services, transportation services, and user-centric and community-centric utilization and deployment of sensor technologies.
DATE: -
TEAM MEMBERS: Ila Berman T. Donna Chen Karen Rheuban Qian Cai
resource project Media and Technology
Co-led by the University of Washington and Science Gallery Dublin, this project aims to drive and transform the next generation of broadening participation efforts targeting teen-aged youth from communities historically underrepresented in STEM fields. This project investigates how out-of-school time (OST) programs that integrate epistemic practices of the arts, sciences, computer science, and other disciplines, in the context of consequential activities (such as creating radio segments, designing museum exhibitions, or building online games), can more broadly appeal to and engage youth who do not already identify as STEM learners. STEM-related skills and capacities (such as computational thinking, design, data visualizations, and digital storytelling) are key to productive and creative participation in many future civic and workplace activities, and are driving the 30 fastest-growing occupations in the US. But many new jobs will entail a hybrid blend of skills, such as programming and design skills that many students who have disengaged with academic STEM pathways may already have and would be eager to develop further. There is not currently a strong foundation of research-based evidence to guide the design, implementation, and evaluation transdisciplinary programs - in which STEM skills are embedded as tools for meaningful participation - or how such approaches relate to long-term outcomes. Hypothesizing that OST programs which effectively engage youth during their high-leverage teenage years can significantly impact youths' longer-term STEM learning trajectories, this project will involve: 1) Five 3-year studies documenting learning in different technology-rich contexts: Making Afterschool, Media Production, Museum Exhibition Design, Digital Arts Programs, and Pop-Up/Street Science Programs; 2) A 4-year longitudinal study, involving 100 youth from the above programs; 3) The creation of a number of practical measurement tools that can be used to monitor how programs are leveraging the intersections of the arts and sciences to support student engagement and learning; and 4) A Professional Development program conducted at informal science education conferences in the EU and US to engage the informal STEM field with emerging findings. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences to better understand, strengthen, and coordinate STEM engagement and learning. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments.

Transdisciplinary, equity-oriented OST programs can provide supportive social contexts in which STEM concepts and practices are taken up as the means for meaningful participation in valued activities, building students' STEM skills in ways that can propel their future academic, career, and lifelong learning choices. This project will build the knowledge base about these emerging 21st century transdisciplinary approaches to broadening participation investigating: 1) The epistemic intersections across a range of disciplines (art, science, computation, design) that operate to broaden appeal and meaningful participation for underrepresented youth; 2) How transdisciplinary activities undertaken in the context of consequential learning (e.g., producing a radio segment, designing an exhibition for the general public) can illuminate the relevance of STEM to young people's lives, concerns, and futures; and 3) How participation in such programs can propel students' longer-term life choices and STEM learning trajectories. The project is a collaboration of the University of Washington, Science Gallery Dublin, Indiana University, Youth Radio in Oakland California, Guerilla Science in New York and London, and the London School of Economics.
DATE: -
resource project Media and Technology
Changes in household-level actions in the U.S. have the potential to reduce rates of greenhouse gas (GHG) emissions and climate change by reducing consumption of food, energy and water (FEW). This project will identify potential interventions for reducing household FEW consumption, test options in participating households in two communities, and collect data to develop new environmental impact models. It will also identify household consumption behavior and cost-effective interventions to reduce FEW resource use. Research insights can be applied to increase the well-being of individuals at the household level, improve FEW resource security, reduce climate-related risks, and increase economic competitiveness of the U.S. The project will recruit, train, and graduate more than 20 students and early-career scientists from underrepresented groups. Students will be eligible to participate in exchanges to conduct interdisciplinary research with collaborators in the Netherlands, a highly industrialized nation that uses 20% less energy and water per person than the U.S.

This study uses an interdisciplinary approach to investigate methods for reducing household FEW consumption and associated direct and indirect environmental impacts, including GHG emissions and water resources depletion. The approach includes: 1) interactive role-playing activities and qualitative interviews with homeowners; 2) a survey of households to examine existing attitudes and behaviors related to FEW consumption, as well as possible approaches and barriers to reduce consumption; and 3) experimental research in residential households in two case-study communities, selected to be representative of U.S. suburban households and appropriate for comparative experiments. These studies will iteratively examine approaches for reducing household FEW consumption, test possible intervention strategies, and provide data for developing systems models to quantify impacts of household FEW resource flows and emissions. A FEW consumption-based life cycle assessment (LCA) model will be developed to provide accurate information for household decision making and design of intervention strategies. The LCA model will include the first known farm-to-fork representation of household food consumption impacts, spatially explicit inventories of food waste and water withdrawals, and a model of multi-level price responsiveness in the electricity sector. By translating FEW consumption impacts, results will identify "hot spots" and cost-effective household interventions for reducing ecological footprints. Applying a set of climate and technology scenarios in the LCA model will provide additional insights on potential benefits of technology adoption for informing policymaking. The environmental impact models, household consumption tracking tool, and role-playing software developed in this research will be general purpose and publicly available at the end of the project to inform future education, research and outreach activities.
DATE: -
TEAM MEMBERS: David Watkins Buyung Agusdinata Chelsea Schelly Rachael Shwom Jenni-Louise Evans
resource project Public Programs
Community education with regard to science comes in many forms and is usually designed to address issues within that community. In this proposal, land use is the focus. This is a general topic and applicable in nearly all locations within communities and in the State. In this case, the topic is used to educate adults and high school students providing each with unique identities. Using satellite-enabled tools, the topology of an area can be mapped in detail and assessed for use thus enabling science education for both adults and high school students. The studies will involve intergenerational learning which is an area needing additional study. Also, the proposers are going to broaden the scope so that it impacts several different areas in the State of Connecticut. This is important because in doing so it will include the diversity of cultures within the State and the education results will reflect this diversity. As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This proposed effort aims to promote lifelong STEM learning through a focus on conservation, geospatial technology and community engagement. The goals are to: (1) develop particular STEM knowledge and skills, and foster STEM identity authoring/learning in two disparate groups of lifelong learners, and (2) gain a deeper understanding of the ways that this learning occurs through research and evaluation. The project will develop an educational program that focuses on conservation science and recent advances in web-enabled geospatial technologies (geographic information systems, remote sensing, and global positioning systems) that, for the first time, make these technologies accessible and attainable for the public. The focus will be on urban and rural areas with underrepresented populations of STEM learners. Two groups of lifelong learners will be targeted: adult volunteers involved with community land conservation issues, and high school-aged adolescents enabling the project to investigate the processes and impacts of intergenerational learning.
DATE: -
TEAM MEMBERS: John Volin David Moss David Campbell Chester Arnold Cary Chadwick