Skip to main content

Community Repository Search Results

resource evaluation Media and Technology
To explore the role and impact of The Innovation Lab at Youth Radio, Rockman et al, an independent research and evaluation organization, conducted an external evaluation of the project. With funding from the National Science Foundation’s Advancing Informal STEM Learning (AISL) program, the Innovation Lab sought to develop and research a scalable, evidence-informed theory of action to engage underrepresented youth in Science, Technology, Engineering, and Mathematics (STEM) learning through the collaborative creation and dissemination of original journalistic media, technology, and curriculum
DATE:
TEAM MEMBERS: Alex Gurn Kristin Bass Ellin O'Leary Elisabeth Soep Julia Hazer
resource research Media and Technology
Informal learning opportunities are increasingly being recognized as important for youth participation in authentic experiences at the intersection of science, technology, engineering, and math (STEM) (Dorsen, Carlson, and Goodyear 2006). These experiences may involve specialized equipment and dedicated time for learners to gain familiarity with the relevant scientific and engineering practices (i.e., designing experiments on their own, struggling to make sense of data, learning from their own mistakes and the results of peers), which often go beyond the classroom. However, the educators who
DATE:
TEAM MEMBERS: Kathryn Williamson Sue Ann Heatherly Vivian Hoette Eva Erdosne Toth David Beer
resource research Public Programs
In this paper we investigated the role youth participatory ethnography played as a pedagogical approach to supporting youth in making. To do so, we examined in-depth cases of youth makers from traditionally marginalized communities in two makerspace clubs in two different mid-sized US cities over the course of three years. Drawing from mobilities of learning studies and participatory frameworks, our findings indicate that participatory ethnography as pedagogical practice repositioned youth and making by helping to foreground youths’ relationality to people, communities, activities and
DATE:
resource project Media and Technology
Changes in household-level actions in the U.S. have the potential to reduce rates of greenhouse gas (GHG) emissions and climate change by reducing consumption of food, energy and water (FEW). This project will identify potential interventions for reducing household FEW consumption, test options in participating households in two communities, and collect data to develop new environmental impact models. It will also identify household consumption behavior and cost-effective interventions to reduce FEW resource use. Research insights can be applied to increase the well-being of individuals at the household level, improve FEW resource security, reduce climate-related risks, and increase economic competitiveness of the U.S. The project will recruit, train, and graduate more than 20 students and early-career scientists from underrepresented groups. Students will be eligible to participate in exchanges to conduct interdisciplinary research with collaborators in the Netherlands, a highly industrialized nation that uses 20% less energy and water per person than the U.S.

This study uses an interdisciplinary approach to investigate methods for reducing household FEW consumption and associated direct and indirect environmental impacts, including GHG emissions and water resources depletion. The approach includes: 1) interactive role-playing activities and qualitative interviews with homeowners; 2) a survey of households to examine existing attitudes and behaviors related to FEW consumption, as well as possible approaches and barriers to reduce consumption; and 3) experimental research in residential households in two case-study communities, selected to be representative of U.S. suburban households and appropriate for comparative experiments. These studies will iteratively examine approaches for reducing household FEW consumption, test possible intervention strategies, and provide data for developing systems models to quantify impacts of household FEW resource flows and emissions. A FEW consumption-based life cycle assessment (LCA) model will be developed to provide accurate information for household decision making and design of intervention strategies. The LCA model will include the first known farm-to-fork representation of household food consumption impacts, spatially explicit inventories of food waste and water withdrawals, and a model of multi-level price responsiveness in the electricity sector. By translating FEW consumption impacts, results will identify "hot spots" and cost-effective household interventions for reducing ecological footprints. Applying a set of climate and technology scenarios in the LCA model will provide additional insights on potential benefits of technology adoption for informing policymaking. The environmental impact models, household consumption tracking tool, and role-playing software developed in this research will be general purpose and publicly available at the end of the project to inform future education, research and outreach activities.
DATE: -
TEAM MEMBERS: David Watkins Buyung Agusdinata Chelsea Schelly Rachael Shwom Jenni-Louise Evans
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at the University of Colorado. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Nichole Pinkard
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at DePaul University. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Bill Penuel Tamara Sumner Nichole Pinkard
resource project Public Programs
This project will develop culturally responsive making and makerspaces with Indigenous communities in Arizona and Utah. The investigators will work in and with these communities to design maker activities utilizing technologies that complement existing cultural practices where the communities are located. This will be done by addressing the following research questions: 1) How does the design of a community makerspace located at a community college on tribal lands differ from the design of a mobile makerspace that travels between tribal communities? What are the affordances and constraints of each model?; 2) How do high-low tech making activities implemented in these two distinct makerspaces support culturally responsive making and STEM learning in American Indian communities?; and 3) How do these new makerspaces and activities impact youth, teacher, and community conceptions of and interest in STEM learning?

By leveraging heritage craft practices, Indigenous technologies, and a mixture of high-low tech tools and materials, this project will expand the range of available maker activities and broaden our definitions of making to encompass craft practices and Indigenous technologies, which are often excluded from the maker literature and makerspaces. Through the design and development of local and mobile makerspace models serving American Indian communities, knowledge of how to design makerspaces that meet community needs and foster STEM learning will be generated. In terms of broader impact, the project will diversify making activities and makerspaces in ways that allow broadened participation in making for underserved American Indian communities. A key project goal is to critically explore making as a democratizing practice that can broaden Indigenous communities' access to and participation in STEM learning. This project is a part of NSF's Maker Dear Colleague Letter (DCL) portfolio (NSF 15-086), a collaborative investment of Directorates for Computer & Information Science & Engineering (CISE), Education and Human Resources (EHR) and Engineering (ENG).
DATE: -
TEAM MEMBERS: Bryan Brayboy Yasmin Kafai Kristin Searle Breanne Litts
resource project Public Programs
Community education with regard to science comes in many forms and is usually designed to address issues within that community. In this proposal, land use is the focus. This is a general topic and applicable in nearly all locations within communities and in the State. In this case, the topic is used to educate adults and high school students providing each with unique identities. Using satellite-enabled tools, the topology of an area can be mapped in detail and assessed for use thus enabling science education for both adults and high school students. The studies will involve intergenerational learning which is an area needing additional study. Also, the proposers are going to broaden the scope so that it impacts several different areas in the State of Connecticut. This is important because in doing so it will include the diversity of cultures within the State and the education results will reflect this diversity. As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This proposed effort aims to promote lifelong STEM learning through a focus on conservation, geospatial technology and community engagement. The goals are to: (1) develop particular STEM knowledge and skills, and foster STEM identity authoring/learning in two disparate groups of lifelong learners, and (2) gain a deeper understanding of the ways that this learning occurs through research and evaluation. The project will develop an educational program that focuses on conservation science and recent advances in web-enabled geospatial technologies (geographic information systems, remote sensing, and global positioning systems) that, for the first time, make these technologies accessible and attainable for the public. The focus will be on urban and rural areas with underrepresented populations of STEM learners. Two groups of lifelong learners will be targeted: adult volunteers involved with community land conservation issues, and high school-aged adolescents enabling the project to investigate the processes and impacts of intergenerational learning.
DATE: -
TEAM MEMBERS: John Volin David Moss David Campbell Chester Arnold Cary Chadwick
resource research Public Programs
Young adulthood, typically defined as between the ages of 18 and 25, is a critical period of growth during which young people acquire the education and training that serve as the basis for their later occupations and income (Arnett, 2000). The successful transition from adolescence to early adulthood requires youth to have the skills and resources to graduate high school and then go to college or enter the workforce (Fuligni & Hardway, 2004; Lippman, Atienza, Rivers, & Keith, 2008). To accomplish these tasks in advanced urban societies, young adults need a wide range of social, cognitive
DATE:
TEAM MEMBERS: Julie O'Donnell Sandra Kirkner
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project's goal is to demonstrate an educational model fully commensurate with the demands of the 21st Century workforce, and more specifically, with the emerging “green-tech” economy.
DATE:
TEAM MEMBERS: Tamara Ball
resource project Public Programs
The Museum of Science and Industry (MOSI), in collaboration with the Tampa Community Development Corporation (CDC), will create a youth STEAM (science, technology, engineering, arts, and mathematics) program designed by East Tampa neighborhood participants for the neighborhood. The STEAM program will be a first of its kind in the area and will bring a continuum of experiences in STEAM fields to underserved middle and high school students, as well as volunteer participants, who come from the East Tampa neighborhood. Initial programming topics for career exploration include astronomy/cosmology and space exploration, environmental sciences, engineering, robotics, crime scene forensics, and medical explorations. The project will expand the museum's ability to create a STEAM continuum, increase interest in STEAM careers, and to increase awareness of skills necessary to be successful in STEAM careers.
DATE: -
TEAM MEMBERS: Janet White
resource project Public Programs
The Balboa Park Cultural Partnership, in collaboration with several informal science education and other cultural and business organizations in San Diego, Chicago, and Worcester, MA are implementing a research and development project that investigates a range of possible approaches for stimulating the development of 21st Century creativity skills and innovative processes at the interface between informal STEM learning and methods for creative thinking. The goal of the research is to advance understanding of the potential impacts of creative thinking methods on the public's understanding of and engagement with STEM, with a focus on 21st Century workforce skills of teens and adults. The goal of the project's development activities is to experiment with a variety of "innovation incubator" models in cities around the country. Modeled on business "incubators" or "accelerators" that are designed to foster and accelerate innovation and creativity, these STEM incubators generate collaborations of different professionals and the public around STEM education and other STEM-related topics of local interest that can be explored with the help of creative learning methodologies such as innovative methods to generate creative ideas, ideas for transforming one STEM idea to others, drawing on visual and graphical ideas, improvisation, narrative writing, and the process of using innovative visual displays of information for creating visual roadmaps. Hosting the project's incubators are the Balboa Park Cultural Partnership (San Diego), the Museum of Science and Industry (Chicago) and the EcoTarium (Worcester, MA). National partners are the Association of Science-Technology Centers, the American Association for the Advancement of Science, and the Americans for the Arts. Activities will include: the formation and collaborative processes of three incubator sites, a research study, the development of a creative thinking curriculum infused into science education, professional development based on the curriculum, public engagement events and exhibits, a project website and tools for social networking, and project evaluation. A national advisory council includes professionals in education, science, creativity, and business.
DATE: -