Skip to main content

Community Repository Search Results

resource project Media and Technology
Curious Scientific Investigators (CSI): Flight Adventures immerses children and families in science, technology, engineering, and math (STEM) disciplines. Launched in February 2012, the project supports NASA’s Aeronautics Research Mission Directorate (ARMD), focusing on “innovative ideas to convey the fundamentals of flight, flight technology, and NASA’s role in aeronautics.” The project’s audience includes youth ages 6-18 and the Museum’s more than 1 million annual visitors of all ages. The project’s lead agency, The Children’s Museum of Indianapolis (Museum), developed and implemented the project in Indianapolis in partnership with the Academy of Model Aeronautics and NASA Dryden Flight Research Center. The project’s goals focus on inspiring children and families to develop an interest in STEM concepts and learn about NASA’s role in science and aeronautics research and the evolution of flight, and on engaging and educating them through inquiry-based programs that facilitate understanding of STEM concepts and knowledge and NASA’s contributions to flight. Centered on an original Multimedia Planetarium Show on flight, Flight Adventures, the Museum designed several components, all of which complement the show and the messages it conveys. Among these components are an exhibit area composed of a movable wind tunnel, a display of models, low- and high-tech interactives; a Unit of Study; a TV show, Wings Over Indiana; a website; and a variety of educational and family programs.
DATE: -
TEAM MEMBERS: Jennifer Pace-Robinson Gordon Schimmel
resource project Media and Technology
CREATE (Creating Relevant Education in Astronomy Through Experience) will immerse and teach astronomy to underserved high school students in Milwaukee who will then become planetarium producers and astronomy mentors to younger students. The Milwaukee Public Museum (MPM) is the lead this effort in conjunction with the Boys & Girls Club of Greater Milwaukee (BGCGM).  MPM will also work with NASA and local astronomy institutions (Adler Planetarium & Yerkes Observatory) for educational materials and speakers. CREATE’s goal is to increase participation of high school youth from central-city neighborhoods in science, technology, engineering and math (STEM) education. The objectives are to: Engage these students who have shown an interest in STEM and leverage NASA resources to produce relevant astronomy education. Have the students become mentors for peers and younger students—thus inspiring themselves as well as their mentees to continue their educational paths in science. Build interest in NASA programs and in STEM careers with the creation of their planetarium shows and educational programs for their mentees. Expand CREATE’s impact by making these programs available nationwide and distribution of the planetarium show. The CREATE project will span three years. The first year will be spent on further development and planning of the program.  During years two and three, CREATE staff will work with the students in an intensive 40-week program. Twenty students will be chosen to participate in CREATE each year.
DATE: -
TEAM MEMBERS: Ellen Censky Robert Bonadurer
resource project Public Programs
Families and school-aged constituents at 30 urban, inner-city neighborhood community-based organizations and teachers and students in earth science classes in 40 middle schools. Intent: This project will prepare neighborhood and community leaders in Philadelphia to use simple but effective observation tools and NASA’s educational web content to help their inner-city Philadelphia neighbors learn about space science and technology – and about their city and themselves – by knowledgably exploring the sky. Project Goals: 1. Create multiple opportunities for inner-city children, adults and families to observe and learn about the solar system through neighborhood and city-wide events. 2. Equip CBO’s with the knowledge, skills and materials they need to make space science-related events and activities a sustained part of programming for their constituents. 3. Stimulate interest and engagement in NASA’s missions and resources among residents of traditionally underserved, inner-city neighborhoods through astronomy experiences and NASA’s websites. 4. Create and strengthen collaborative ties between The Franklin Institute, CBO’s, city residents, and local amateur astronomers. Programs/Products produced: 1. Repeatable ‘Galileoscope’ workshops and activities in 30 CBO’s 2. Solar observing activities for 30 CBO’s and 40 middle schools. 3. School assembly-type audience interactive program about observational astronomy for use in schools and community organizations. 4. Recurring neighborhood star parties facilitated through on-going partnerships with local amateur astronomy clubs. 5. Participation in city-wide star party as part of the annual Philadelphia Science Festival.
DATE: -
TEAM MEMBERS: Frederic Bertley Derrick Pitts
resource project Media and Technology
The Challenger Reach 2 U program will reach over 6,500 fourth-grade students in 261 missions from underserved communities throughout southwest Colorado and northwestern New Mexico, including primarily rural, lower socio-economic status, Hispanic and Native American districts that seldom have such STEM educational opportunities. The Colorado Consortium for Earth and Space Science Education (CCESSE) will show that increasing the quality of science, technology, engineering, and mathematics (STEM) education is not only a NASA goal set at the national level and a state and local priority, but is the underlying core competency of our organization as well. As an integral part of our Challenger Reach 2 U proposal to motivate interest in STEM curriculum and to strengthen the Nation's future workforce, we will thoroughly train teachers of these students to be more comfortable with technology and more prepared to deliver motivational STEM lessons, leaving an educational legacy that will greatly outlive the life of this grant. We will provide these students with cross-curricular preparatory lessons which will culminate with an exciting simulated space mission delivered in their own classrooms and moderated by a "NASA" mission director at our Center. With the help of the NASA grant, all of these services will be provided at no cost to the schools.
DATE: -
TEAM MEMBERS: Tracey Tomme
resource project Media and Technology
The Maryland Science Center (MSC) Astrobiology project includes an interactive exhibit and Davis Planetarium program for school and public museum visitors, exploring the search for life in our Solar System, the search for exoplanets and an understanding of extreme forms of Earthly life. Four day-long Educator Workshops have taken place during the project with a total of 179 teachers participating.

Baltimore’s MSC is the lead institution, with the project led by PI Van Reiner, MSC President and CEO and Co-PI Jim O’Leary, MSC Senior Scientist, and science advisors consisting of astronomers, biologists, a geologist and educators representing NASA Goddard Space Flight Center, Space Telescope Science Institute, Carnegie Institute of Washington, Johns Hopkins University and the University of Maryland and Maryland School for the Blind.

The project provides visitors with a sense of the Milky Way Galaxy’s size and composition, the galaxy’s number of stars and potential planets, and the number of other galaxies in the Universe. The exhibit explores Earthly extremophiles, what their survival signifies for life elsewhere in the Solar System, and examines possibilities for life on Mars and moons of the Solar System, explores techniques used to detect exoplanets and NASA’s missions searching for exoplanets and Earth-like worlds. The project looks to provide a sense of the vast number of potential planets that exist, the hardiness of Earthly life, the possibilities for life on nearby planets and moons, and the techniques used to search for exoplanets.

The exhibit and Planetarium program premiered November 2, 2012, and both remain as long-term Science Center offerings. Since opening, MSC has hosted nearly a million visitors, and with the Life Beyond Earth exhibit located in a highly trafficked area near the Davis Planetarium and Science On a Sphere, the great majority of visitors have experienced the exhibit. The We Are Aliens program in the Davis Planetarium has been seen by more than 26,000 visitors since opening.
DATE: -
TEAM MEMBERS: Van Reiner Jim O'Leary
resource project Professional Development, Conferences, and Networks
Ascent to Orbit: An Educator Professional Development Program Investigating STEM Concepts for Space Shuttle Missions and Beyond trains upper elementary and middle school teachers to deliver inquiry-based, hands-on activities exploring STEM concepts involved in the evolution of human space exploration. The California Science Center Foundation will engage a total of 100 teachers from the Greater Los Angeles Area, 50 per year for two years. The curriculum will be organized around the Pre-Shuttle Era, Shuttle/International Space Station Era and Future of Human Spaceflight. This coursework will be developed in consultation with Dr. Ken Phillips, the California Science Center's Curator of Aerospace Science to be interdisciplinary and correlate with the newly adopted Next Generation Science Standards. As part of the 16-hour, two-day training session, teachers will view Space Shuttle Endeavour as well as other significant artifacts of human space exploration in the Science Center's singular Air and Space collection, including the Mercury-Redstone 2, Gemini 11 Capsule and Apollo-Soyuz Command Module. The goal is to engage teachers and their students with a core set of STEM concepts that stimulate critical thinking about science and engineering principles. As a result of the professional development, teachers will gain a deeper understanding of core STEM concepts, be motivated to embed STEM and space related concepts into their curriculum, and foster in students an interest in space travel that begins with a trip to see Space Shuttle Endeavour and journeys to the future of human space exploration.
DATE: -
TEAM MEMBERS: Jeffrey Rudolph Robin Gose Ken Phillips
resource project Public Programs
The Astronomical Society of the Pacific (ASP) and its collaborators are conducting a set of research and development activities focusing on early childhood astronomy in the first field-wide effort to increase the capacity of informal science education (ISE) institutions to effectively engage their youngest visitors (ages 3 - 5) in astronomy. Leading the project is an Action Research Group comprised of the ASP; experts in cognitive development, early childhood, and astronomy learning progressions from UC Santa Cruz, Cal Poly San Luis Obispo, and Penn State; and the Lawrence Hall of Science at UC Berkeley, Children's Discovery Museum of San Jose, and San Luis Obispo Children's Museum as sites for research, field testing, and implementation. The project will identify critical areas of focus for early childhood astronomy and will test the hypothesis that early astronomy learning is not only possible but may contribute to a more sophisticated understanding of the domain. A key question is: How can the ISE field scaffold children's early curiosity and ideas about astronomy to position them for greater understanding and interest in the topic? The results of the research and the materials that are created for educators will receive broad distribution nationally.
DATE: -
TEAM MEMBERS: Astronomical Society of the Pacific Suzanne Gurton Julia Plummer Maureen Callanan Jennifer Jipson
resource research Media and Technology
The Zooniverse projects turn everyday people into "citizen scientists" who work online with real data to assist scientists in conducting research on a variety of topics related to galaxies, exoplanets, lunar craters, and solar flares, among others. This paper describes our initial study to assess the conceptual knowledge and reasoning abilities of citizen scientists participating in two Zooniverse projects: Galaxy Zoo and Moon Zoo. In order to measure their knowledge and abilities, we developed two new assessment instruments, the Zooniverse Astronomical Concept Survey (ZACS) and the Lunar
DATE:
TEAM MEMBERS: Edward Prather Sebastien Cormier Colin Wallace Chris Lintott Jordan Raddick Arfon Smith
resource research Media and Technology
This study extends our understanding of the goals, beliefs, and pedagogical choices made by planetarium professionals. Interviews were conducted with planetarium professionals (N=36) to assess their goals for audiences and beliefs about the design of the learning environment. Classification of participants, according to a six-facet framework on effective learning environment design, suggests a range of perspectives on the design of the learning environment that primarily include learner-centered, motivationally-oriented, socioculturally-centered, and physically-oriented perspectives. Results
DATE:
TEAM MEMBERS: Julia Plummer Kim Small
resource research Public Programs
Citizen science, in which volunteers work with professional scientists to conduct research, is expanding due to large online datasets. To plan projects, it is important to understand volunteers' motivations for participating. This paper analyzes results from an online survey of nearly 11 000 volunteers in Galaxy Zoo, an astronomy citizen science project. Results show that volunteers' primary motivation is a desire to contribute to scientific research. We encourage other citizen science projects to study the motivations of their volunteers, to see whether and how these results may be
DATE:
TEAM MEMBERS: M. Jordan Raddick Georgia Bracey Pamela Gay Chris Lintott Carie Cardamone Phil Murray Kevin Schawinski Alexander Szalay Jan Vandenberg
resource project Media and Technology
Funded jointly by the Institute of Museum and Library Services (IMLS) and the MacArthur Foundation, in partnership with the and Association of Science-Technology Centers (ASTC) and Urban Libraries Council (ULC), Learning Labs in Libraries and Museums supports the planning and design of 24 learning labs in libraries and museums nationwide. The inaugural cohort of 12 sites ran from January 2012 to June 2013, and a second cohort of 12 additional sites began in January 2013 and will extend through June 2014. In addition to the primary awardees, most grants included additional institutional partners, resulting in a rich community including over 100 professionals from approximately 50 participating organizations (libraries, museums, universities, and community-based organizations). The labs are intended to engage middle- and high-school youth in mentor-led, interest-based, youth-centered, collaborative learning using digital and traditional media. Inspired by YOUmedia, an innovative digital space for teens at the Chicago Public Library, as well as innovations in science and technology centers, projects participating in Learning Labs are expected to provide prototypes for the field based on current research about digital media and youth learning, and build a "community of practice" among the grantee institutions and practitioners interested in developing similar spaces.
DATE: -
TEAM MEMBERS: Association of Science-Technology Centers Margaret Glass Amy Eshelman Korie Twiggs
resource project Media and Technology
Brigham Young University and the University of Maryland, in partnership with the Smithsonian Institution, the Computer History Museum, and NASA, plus leading game designers, educators, scientists, and researchers, will conduct research on the design and development of two large-scale Alternate Reality Games (ARGs) based on deep-time science in astrobiology, astrophysics, and interplanetary space travel. The project will iteratively design and test two distinct types of ARGs (closed- and open-ended) to study the effects of these ARGs on STEM learning. The ARGs will be based upon the Next Generation Science Standards (NGSS), affording learners with intensive, self-driven, and scaffolded scientific learning and will be aimed at attracting girls and other groups historically underrepresented in science and technology. Each ARG will be designed by NASA scientists, educators and education researchers, and game-based learning experts and will be highly interactive: engaging learners in collaborative investigations in real and virtual worlds to collect scientific data, conduct data analysis, and contribute scientific evidence that will help solve scientific questions within a science-based narrative derived from real world problems that will develop learners' computational thinking skills in a collaborative, participatory virtual learning environment. Combining data from web and social media analytics, player interviews, surveys, and user-generated content, researchers, and evaluation experts at UXR who will provide an outcomes-based evaluation, including front-end, formative, remedial, and summative evaluations, will establish the properties of ARGs that most effectively advance informal STEM learning outcomes. By comparing open-ended and closed-ended ARGs, the PIs will be able to assess the relative strengths and weaknesses of two distinct approaches to Alternate Reality Game design. The project team will test the hypothesis that open-ended, user-generated content will support inquiry-based learning, peer-to-peer learning, and life-wide and life-deep learning, while close-ended, narrative-rich ARGs will support specific transfer of STEM knowledge, collaboration, and problem solving. To help ensure that the games appeal to their target audiences, the project team will adopt co-design methods, enlisting the creative input of participating teens at each stage of the design process. Supplementary materials and lesson plans developed in close consultation with teachers, librarians, teens, and external stakeholders will enable the ARGs to be widely and effectively used as a model in museums, classrooms, libraries, and after-school programs. The proposed ARGs represent a unique environment to test learning principles that enable players to bridge their learning through transmedia across multiple contexts and test the effects of collaboration with massive numbers of concurrent players. As a result, the project should yield insights on how learning principles can be adopted and re-appropriated for emerging learning environments, including those that that might be crowd-sourced. The research is well grounded in the literature and the PIs do an excellent job of mapping ARG design principles to the pertinent learning science research, providing a clear sense of the particular affordances of the genre that should lead to new understandings. The approach has profound implications for the way we might teach the next generation of students. The ability to mix problem solving and learning in virtual spaces with experiences and data derived from the physical world could dramatically change how we understand the role of technology in education.
DATE: -
TEAM MEMBERS: Derek Hansen Steven Shumway June Ahn Elizabeth Bonsignore Kari Kraus