Skip to main content

Community Repository Search Results

resource project Media and Technology
The University of Kansas Natural History Museum, in collaboration with the University of California Museum of Paleontology, will develop, test, and deploy an immersive educational game on the topic of evolution and common ancestry. The museum will frame the game with a narrative that involves tracing the origin of a zoonotic disease (infectious disease that is transmitted between species from animals to humans or from humans to animals). Played on the museum floor, the escape room-inspired game will explore innovative formats for museum learning and engagement. It is being designed for families with children ages 7 to 12, and by visiting groups of schoolchildren in grades 3 to 5.
DATE: -
TEAM MEMBERS: Teresa MacDonald
resource project Media and Technology
The New York Hall of Science (NYSCI) will develop, test, market, and disseminate an interactive graphic novel iBook that will use the interests of young people (ages 10–14) in animals and comics to engage them in learning about health and clinical research. Provisionally called “Transmission: Astonishing Tales of Human-Animal Diseases,” the project represents a new approach to engaging young people in biomedical science learning.

Graphic novels are one of the fastest growing categories in publishing and bookselling, and today, they are significantly more sophisticated than the comics that came before them. They are also enormously popular among young people. The proposed graphic novel iBook will focus on the diseases that humans and animals share and pass between them (sometimes to devastating consequences), from Ebola, bird flu, and West Nile disease to influenza, measles, and pneumonia. Moreover, like many other contemporary graphic novels, it will address a pressing issue of the day—amely, the growth of zoonotic and anthropozoonotic diseases.

The iBook will be developed in a digital, interactive format (a growing trend within the genre) and, like many graphic novel titles, will take a mystery and forensic crime approach to exploring its content. Ultimately, Transmission will become a national model for conveying biomedical understanding through the use of up-to-the-minute interactive iBook technologies and an engaging graphic novel format.
DATE: -
TEAM MEMBERS: martin weiss Geralyn Abinader
resource project Media and Technology
Increasingly, scientists and their institutions are engaging with lay audiences via media. The emergence of social media has allowed scientists to engage with publics in novel ways. Social networking sites have fundamentally changed the modern media environment and, subsequently, media consumption habits. When asked where they primarily go to learn more about scientific issues, more than half of Americans point to the Internet. These online spaces offer many opportunities for scientists to play active roles in communicating and engaging directly with various publics. Additionally, the proposed research activities were inspired by a recent report by the National Academies of Sciences, Engineering, and Medicine that included a challenge to science communication researchers to determine better approaches for communicating science through social media platforms. Humor has been recommended as a method that scientists could use in communicating with publics; however, there is little empirical evidence that its use is effective. The researchers will explore the effectiveness of using humor for communicating about artificial intelligence, climate science and microbiomes.

The research questions are: How do lay audiences respond to messages about scientific issues on social media that use humor? What are scientists' views toward using humor in constructing social media messages? Can collaborations between science communication scholars and practitioners facilitate more effective practices? The research is grounded in the theory of planned behavior and framing as a theory of media effects. A public survey will collect and analyze data on Twitter messages with and without humor, the number of likes and re-tweets of each message, and their scientific content. Survey participants will be randomly assigned to one of twenty-four experimental conditions. The survey sample, matching recent U.S. Census Bureau data, will be obtained from opt-in panels provided by Qualtrics, an online market research company. The second component of the research will quantify the attitudes of scientists toward using humor to communicate with publics on social media. Data will be collected from a random sample of scientists and graduate students at R1 universities nationwide. Data will be analyzed using descriptive statistics and regression modeling.

The broader impacts of this project are twofold: findings from the research will be shared with science communication scholars and trainers advancing knowledge and practice; and an infographic (visual representation of findings) will be distributed to practitioners who participate in research-practice partnerships. It will provide a set of easily-referenced, evidence-based guidelines about the types of humor to which audiences respond positively on social media.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Sara Yeo Leona Yi-Fan Su Michael Cacciatore
resource project Media and Technology
A team of experts from five institutions (University of Minnesota, Adler Planetarium, University of Wyoming, Colorado State University, and UC San Diego) links field-based and online analysis capabilities to support citizen science, focusing on three research areas (cell biology, ecology, and astronomy). The project builds on Zooniverse and CitSci.org, leverages the NSF Science Gateways Community Institute, and enhances the quality of citizen science and the experience of its participants.

This project creates an integrated Citizen Science Cyberinfrastructure (CSCI) framework that expands the capacity of research communities across several disciplines to use citizen science as a suitable and sustainable research methodology. CSCI produces three improvements to the infrastructure for citizen science already provided by Zooniverse and CitSci.org:


Combining Modes - connecting the process of data collection and analysis;
Smart Assignment - improving the assignment of tasks during analysis; and
New Data Models - exploring the Data-as-Subject model. By treating time series data as data, this model removes the need to create images for classification and facilitates more complex workflows. These improvements are motivated and investigated through three distinct scientific cases:
Biomedicine (3D Morphology of Cell Nucleus). Currently, Zooniverse 'Etch-a-Cell' volunteers provide annotations of cellular components in images from high-resolution microscopy, where a single cell provides a stack containing thousands of sliced images. The Smart Task Assignment capability incorporates this information, so volunteers are not shown each image in a stack where machines or other volunteers have already evaluated some subset of data.
Ecology (Identifying Individual Animals). When monitoring wide-ranging wildlife populations, identification of individual animals is needed for robust estimates of population sizes and trends. This use case combines field collection and data analysis with deep learning to improve results.
Astronomy (Characterizing Lightcurves). Astronomical time series data reveal a variety of behaviors, such as stellar flares or planetary transits. The existing Zooniverse data model requires classification of individual images before aggregation of results and transformation back to refer to the original data. By using the Data-as-Subject model and the Smart Task Assignment capability, volunteers will be able to scan through the entire time series in a machine-aided manner to determine specific light curve characteristics.


The team explores the use of recurrent neural networks (RNNs) to determine automated learning architectures best suited to the projects. Of particular interest is how the degree to which neighboring subjects are coupled affects performance. The integration of existing tools, which is based on application programming interfaces (APIs), also facilitates further tool integration. The effort creates a citizen science framework that directly advances knowledge for three science use cases in biomedicine, ecology, and astronomy, and combines field-collected data with data analysis. This has the ability to solve key problems in the individual applications, as well as benefiting the research of the dozens of projects on the Zooniverse platform. It provides benefits to researchers using citizen scientists, and to the nearly 1.6 million citizen scientists themselves.

This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Division of Research on Learning in Formal and Informal Settings, within the NSF Directorate for Education and Human Resources.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Gregory Newman Subhashini Sivagnanam Laura Trouille Sarah Benson-Amram Jeff Clune Lucy Fortson Craig Packer Christopher Lintott Daniel Boley
resource project Public Programs
To reach its full potential in science, technology, engineering, and mathematics (STEM), the United States must continue to recruit, prepare and maintain a diverse STEM workforce. Much work has been done in this regard. Yet, underrepresentation in STEM fields persists and is especially pronounced for Hispanic STEM professionals. The Hispanic community is the youngest and fastest growing racial/ethnic group in the United States but comprises only seven percent of the STEM workforce. More evidence-based solutions and innovative approaches are required. This project endeavors to address the challenges of underrepresentation in STEM, especially among individuals of Hispanic descent, through an innovative approach. The University of San Diego will design, develop, implement, and test a multilayered STEM learning approach specific to STEM learning and workforce development in STEM fields targeting Hispanic youth. The STEM World of Work project will explore youth STEM identity through three mechanisms: (1) an assessment of their individual interests, strengths, and values, (2) exposure to an array of viable STEM careers, and (3) engagement in rigorous hands-on STEM activities. The project centers on a youth summer STEM enrichment program and a series of follow-up booster sessions delivered during the academic year in informal contexts to promote family engagement. Paramount to this work is the core focus on San Diego's Five Priority Workforce Sectors: Advanced Manufacturing, Information and Communications Technology, Clean Energy, Healthcare, and Biotech. Few, if any, existing projects in the Advancing Informal STEM learning portfolio have explored the potential connections between these five priority workforce sectors, informal STEM learning, and identity among predominately Hispanic youth and families engaged in a year-long, culturally responsive STEM learning and workforce focused program. If successful, the model could provide a template for the facilitation of similar efforts in the future.

The STEM World of Work project will use a mixed-methods, exploratory research design to better understand the variables influencing STEM learning and academic and career choices within the proposed context. The research questions will explore: (1) the impacts of the project on students' engagement, STEM identity, STEM motivation, and academic outcomes, (2) factors that moderate these outcomes, and (3) the impact the model has on influencing youths' personal goals and career choices. Data will be garnered through cross-sectional and longitudinal surveys and reflective focus groups with the students and their parents/guardians. Multivariate analysis of variance, longitudinal modeling, and qualitative analysis will be conducted to analyze and report the data. The findings will be disseminated using a variety of methods and platforms. The broader impacts of the findings and work are expected to extend well beyond the project team, graduate student mentors, project partners, and the estimated 120 middle school students and their families from the predominately Hispanic Chula Vista Community of San Diego who will be directly impacted by the project.

This exploratory pathways project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Perla Myers Vitaliy Popov Odesma Dalrymple Yaoran Li Joi Spencer
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This Change Makers project will establish Food Justice Ambassador corps across three cities in Massachusetts where youth will install, manage and learn the science and technology underlying hydroponics. The project takes a near-peer mentoring approach that empowers high school youth to take the lead in improving ethnic minority and low-income residents' access to healthy produce and to help educate middle school youth regarding the value of fresh produce in one's diet by learning the science of hydroponics. Youth will create story maps to visualize food accessibility in their communities. High school youth will work with their communities to establish hydroponic farms in middle school after-school settings. The food that is grown will be provided to the community through farmers' markets. Youth will share their work with a larger community of urban farmers at the Massachusetts Urban Farming Conference. This project seeks to understand the contribution on youth development by the model's three components: (1) STEM learning embedded in a social justice framework, (2) near-peer mentoring, and (3) youth purpose and career development. This will enable researchers to better understand how the project enables youth to learn STEM skills; apply them to a real life problem; learn the relevance of STEM skills for addressing personal, career aspiration, and social justice issues; develop a sense of purpose and aspirations related to STEM fields; and mentor other youth through the same process. The project will use a mixed-method, multi-site longitudinal study utilizing quantitative surveys, structural equation modeling, and qualitative interviews to study the intersections of the components of the project. As such, the study will address three key questions: 1) How do youth and mentors perceive and experience their roles as participants in the pedagogy? 2) What is the impact of the intervention on youth' sense of purpose, identity, career adaptability, work volition, critical consciousness, school engagement, STEM interests, and STEM intentionality? 3) What is the contribution of relational/mentoring and psychosocial/career adaptability aspects of the youths' contexts on their capacity to benefit from this program and to develop and sustain purpose and engagement in school and STEM? Most urban youth (and adults) have little knowledge of where their food comes from and have limited opportunities to learn how to grow produce as well as develop related skills that can lead to a career in a STEM field. This is particularly disconcerting as 55% of African Americans live inside central cities (90% in metropolitan areas) and over half of all Latino/as live in central cities (United States Census Bureau, 2011). This project entails the recruitment of low-income youth from populations underrepresented in science into a program where social justice concerns (food justice, food security) are illuminated, analyzed, and acted upon through the development of STEM knowledge and skills. Specifically, this project recognizes the potential for urban youth to become deeply knowledgeable citizens who can mobilize their STEM knowledge and skills to resolve social injustices such as food deserts. If successful, this project will provide a model that should be transferable to similar contexts to help broaden participation in STEM.
DATE: -
TEAM MEMBERS: George Barnett Belle Liang David Blustein