Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS: Remy Dou Heidi Cian Zahra Hazari Philip Sadler Gerhard Sonnert
resource project Public Programs
Mathematizing, Visualizing, and Power (MVP): Appalachian Youth Becoming Data Artists for Community Learning is a three-year Advancing Informal STEM Learning, Innovations and Development, project that focuses on community-centered data exploration catalyzed by youth. The project develops statistical artistry among young people in East Tennessee Appalachian communities and enables these youth to share their data visualizations with their communities to foster collective reflection and understanding. The creative work generated by the MVP project will be compelling in two ways, both as statistical art and as powerful statements giving voice to the experience of communities. Critical aspects of the MVP model include (1) youth learning sessions that position youth as owners of data and producers of knowledge and (2) Community Learning Events that support community learning as youth learning occurs. The MVP project has a primary focus on broadening the STEM participation of underrepresented communities of Appalachia. The project’s mission is to increase the learning and life outcomes of young people and communities of Appalachia by creating a meaningful foundation of data science and collective data exploration. The University of Tennessee partners with Pellissippi State Community College, Drexel University, and the Boys & Girls Club of the Tennessee Valley to bring together a convergent team of community members, practitioners, and professionals, with the expertise to carry out the project. The project will impact approximately 120 youth and 3800 of their East Tennessee community members. The research generated will inform how to engage community members in learning about community issues through the exploration of datasets relevant to participants.

The field of STEM education is in urgent need of knowledge about effective models to inspire community-based data exploration with young people as leaders in these efforts. The MVP project includes engaging youth with meaningful problems, building a discourse community with possibilities for action, re-positioning youth as knowledge producers within their own communities, leveraging linguistic and cultural resources of the youth participants and their communities, and implementing critical events that support substantial interaction between youth, community members, and the data visualizations. MVP builds on the idea that the design of data visualizations requires an understanding of both data science and artistic design. Research will inform the model of community engagement, examine data artists’ identities, and document community learning. The MVP model will be designed, developed, tested, and refined through three cycles of design-based research. The overarching research question guiding these cycles is: What affordances (and delimitations) related to identity and learning does the model provide for MVP Youth and community members? Data sources for the project include: fieldnotes, portfolios created by MVP Youth, youth pre/post interviews, observations of the learning sessions, a project documentary, surveys for youth and community members, interviews with community members, and audience feedback. The National Institute for STEM Evaluation and Research (NISER) will provide formative and summative evaluation about project activities. Formative feedback will be integrated into the ongoing research cycles. The research conducted will inform (1) the community learning model; (2) the integrated pedagogy and curriculum of the MVP Youth learning sessions that emphasize data science through design arts; and, (3) research on community learning and youth identity. Findings will be shared through conferences, academic and practitioner-focused journals, a video documentary, a Summit on Engaging Youth and Communities in Data, and a project website.
DATE: -
TEAM MEMBERS: Lynn Hodge Elizabeth Dyer Joy Bertling Carlye Clark
resource project Public Programs
This INSPIRE project addresses the issue of high volume hydraulic fracturing, also called fracking, and its effects on ground water resources. Fracking allows drillers to extract natural gas from shale deep within the earth. Methane gas sometimes escapes from shale gas wells and can contaminate water resources or leak into the atmosphere where it contributes to greenhouse gas emissions. Monitoring for these potential leaks is difficult because methane is also released into aquifers naturally, and because monitoring is time- and resource-intensive. Such subsurface leakage may also be relatively rare. This project seeks to improve overall understanding of the impacts of natural gas drilling using both advances in computer science and geoscience, and to teach the public about such impacts. The project will elucidate both the effects of human activities such as shale gas development as well as natural processes which release methane into natural waters. Results of the proposed research will lead to a better understanding of water quality in areas of shale-gas development and will highlight problems and potentially problematic management practices. The research will advance both the fields of geoscience and computer science, will train interdisciplinary graduate students, and involve citizen scientists in collecting data and understanding environmental data analysis.

The project combines new hydro-geochemical strategies and data mining approaches to study the release of methane into streams and ground waters. For example, researchers will explore how to analyze the heterogeneous spatial data that describe distributions of methane concentrations in natural waters. The objectives of this project are to i) transform the ability to measure methane in streams; ii) train citizen scientists to work with project scientists to sample streams in an area of shale-gas development and publish large-volume datasets of methane in natural waters and aquifers; iii) innovate data mining and machine learning methods for environmental data to identify anomalous spots with potential leakage; iv) run field campaigns to measure methane concentrations and isotopic signatures of water samples in these spots; v) foster dialogue among nonscientists, consultants, university scientists, members of the gas industry, government agencies, and nonprofit organizations in and beyond the target region. Toward this end, the team will host workshops aimed to build dialogue among stakeholders and will release data analytic software for environmental measurements to benefit a broader research community.
DATE: -
TEAM MEMBERS: Susan Brantley Zhenhui Li
resource research Media and Technology
The Jackprot is a didactic slot machine simulation that illustrates how mutation rate coupled with natural selection can interact to generate highly specialized proteins. Conceptualized by Guillermo Paz-y-Miño C., Avelina Espinosa, and Chunyan Y. Bai (New England Center for the Public Understanding of Science, Roger Williams University and the University of Massachusetts, Dartmouth), the Jackprot uses simplified slot-machine probability principles to demonstrate how mutation rate coupled with natural selection suffice to explain the origin and evolution of highly specialized proteins. The
DATE:
TEAM MEMBERS: New England Center for the Public Understanding of Science Avelina Espinosa Guillermo Paz-y-Mino-C
resource project Public Programs
The "Environmental Science Information Technology Activities (ESITA)" based at the Lawrence Hall of Science (LHS) at UC-Berkeley is a three-year, youth-based proposal that seeks to engage 144 inner-city ninth and tenth graders in learning experiences involving environmental science and information technology. The goal of the project is to develop, field-test, and disseminate an effective student-centered, project-based model for increasing understanding and interest in information technology. Program components included an afterschool program, summer enrichment and an internship program. An extensive partnership involving community based agencies, environmental science organizations, a local high school and industry support the project by serving as host sites for the afterschool program and internship component. Student participation in project-based, IT-dependent research activities related to environmental science will occur year round. Students will research air and water quality in their local communities and study attitudes toward -- and use of -- information technology among their peers. The focus of the research activities is based on the results of a students-needs assessment. Students participate in the program over a two-year period and are expected to receive at least 240 total contact hours. The afterschool program serves as the project's principal mechanism for content delivery. The five-month afterschool program consists of inquiry-based mini-courses on the following topics: Information Technology tools and concepts, earth and physical science, data compilation and modeling, and publication of research results. The summer enrichment component encompasses a series of workshops at LHS; excursions to IT-related exhibits, environmental facilities, and IT-based companies; and an annual student robotics fair. During the second year of program participation students will complete 12-month internships to support the application of concepts and skills learned the first year. The LHS Student Geoscience Research Opportunities program will serve as a model host site for the program. Stipends are provided throughout the program to encourage student participation and retention.
DATE: -
TEAM MEMBERS: Kevin Cuff Marco Molinaro
resource evaluation Media and Technology
This report summarizes evaluative findings from a project titled “What Curiosity Sounds Like: Discovering, Challenging, and Sharing Scientific Ideas” (a.k.a.: “Discovery Dialogues”). The project, a Full-Scale development project funded by the National Science Foundation as part of its Advancing Informal Science Learning (AISL) program, explored new ways to actively engage both lay and professional audiences, and foster meaningful communication between scientists and the general public. Appendix includes survey and interview questions.
DATE:
TEAM MEMBERS: New York Public Radio - WNYC Jennifer Borland