Skip to main content

Community Repository Search Results

resource project Public Programs
The Louisiana Art & Science Museum (LASM) will conduct a three-year program, “Healthy Aging with LASM,” which will serve senior adults in the 11-parish capital region. The museum will implement the program in partnership with the Capital Area Agency on Aging, the East Baton Rouge Parish Council on Aging, the Baton Rouge General Arts in Medicine Program, and Dr. Rebecca Bartlett. Senior adults have faced unprecedented levels of isolation, stress, and health risk due to the COVID-19 pandemic. The museum will present virtual and in-person art and science programming designed to combat isolation, foster meaningful connections, and promote healthy aging. Programming will include virtual field trips, distribution of arts and science virtual reality headsets, and a series of hands-on arts workshops.
DATE: -
TEAM MEMBERS: Nita Mitchell
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource research Media and Technology
The last three decades have seen extensive reflection concerning how science communication should be modelled and understood. In this essay we propose the value of a cultural approach to science communication — one that frames it primarily as a process of meaning-making. We outline the conceptual basis for this view of culture, drawing on cultural theory to suggest that it is valuable to see science communication as one aspect of (popular) culture, as storytelling or narrative, as ritual, and as collective meaning-making. We then explore four possible ways that a cultural approach might
DATE:
TEAM MEMBERS: Sarah Davies Megan Halpern Maja Horst David Kirby Bruce Lewenstein
resource project Public Programs
This project will incorporate lessons learned from our previously funded SEPA, based in five Title I elementary schools in the District of Columbia and Prince George’s County Maryland. In this proposal, “SCIENCE” will engage a new audience of learners in their out of school time in the setting of community libraries. We will provide programming that uses hands- on, inquiry-based learning based on our established art and science curriculum designed to improve the physical, cognitive and social development of children and their families.

SCIENCE will include instructional units, web based activities and ‘hands on/brains on’ manipulation utilizing our compact, portable and unique “art and science in a box”, which consolidates all materials needed to bring excitement to STEM learning. We will focus on preventative health areas of concern to our community, including asthma, stress, cardio-metabolic risk, sleep and behavioral issues, including bullying, genetic diseases like sickle cell disease and, injury prevention at home, in school and with sports.

We will also provide professional development training for informal educators. Specifically, we will adapt our previously successful in-school curriculum for a broader group of children from grades K–5 who utilize the District of Columbia Public Libraries (DCPL) and Enoch Pratt Free Library (EPFL). The curriculum is aligned to both Common Core State Standards and Next Generation Science Standards, and will be expanded with the addition of bioengineering/imaging/computing, and mindfulness.

With our integrated-art focused STEM and preventative health educational program, we will empower children by encouraging curiosity and discovery as well as providing tools to incorporate health and science messaging to improve school readiness. Over the course of the five years, we will implement the program progressively in 10 DCPL branches and 2 Baltimore branches. Programming will take place during winter and spring breaks, professional development days, special holidays and weekends.

We will continue our successful one week hospital summer program, Dr. Bear’s Summer Science Experience, an interactive STEAM experience which takes place in the hospital and its research laboratories. In addition to student focused programming, we will also create Family Learning Events—entertaining and collaborative programs for families—to be held in DCPL and EPFL branches with a focus on disease prevention which adversely affects our community. Take home materials will include handouts, web resources, apps and links in in both English and Spanish, and will focus on reading readiness and mastery of STEM concepts.
DATE: -
TEAM MEMBERS: Naomi Luban
resource research Informal/Formal Connections
In the United States, broad study in an array of different disciplines —arts, humanities, science, mathematics, engineering— as well as an in-depth study within a special area of interest, have been defining characteristics of a higher education. But over time, in-depth study in a major discipline has come to dominate the curricula at many institutions. This evolution of the curriculum has been driven, in part, by increasing specialization in the academic disciplines. There is little doubt that disciplinary specialization has helped produce many of the achievement of the past century
DATE:
TEAM MEMBERS: David Skorton Ashley Bear National Academies of Sciences, Engineering, and Medicine
resource project Media and Technology
As part of its overall effort to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program, seeks to advance new approaches to, and evidence-based understanding of, the design and development of science, technology, engineering, and mathematics (STEM) learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. In alignment with these aims, the STEM + Digital Literacies (STEM+L) project will investigate science fiction as an effective mechanism to attract and immerse adolescents (ages 10-13) from diverse cultural backgrounds in environmental and human health content and socio-scientific issues. This work is particularly novel, as the current knowledge base is limited, and largely addresses the high school level. Therefore, the results of the proposed effort could yield important findings regarding the feasibility of this activity as an effective platform for science learning and engagement for younger students. As such, STEM+L would not only advance knowledge in the field but would also contribute to a growing AISL portfolio on digital literacy and learning.

STEM+L is an early stage Innovations in Development project that will engage thirty middle school students in out of school time experiences. Over a twenty-four-week period, students will work collaboratively in groups in-person and online with their peers and field experts to design, develop, and produce STEM content rich, multimedia science fictions. The in-person learning experiences will take place on the University of Miami campus during the summer and academic year. Culminating activities include student presentations online and at a local Science Fiction Festival. The research component will employ an iterative, design-based approach. Four research questions will be explored: (a) How do students learn science concepts and multimodal digital literacies through participating in the STEM+L Academy? (b) How do students change their views in STEM related subject matter and in pursuing STEM related careers? (c) How do students participate in the STEM+L Academy? (d) How do we best support students' participation and learning of STEM+L in face-to-face and online environments? Data collection methods include video records, student-generated artifacts, online surveys, embedded assessments, interviews, and multimodal reflections. Comparative case analysis and a mixed methods approach will be employed. A rigorous evaluation will be conducted by a critical external review board. Inclusive and innovative dissemination strategies will ensure that the results of the research and program reach a broad range of audiences including both informal and formal STEM and literacy educators and researchers, learning scientists, local communities, and policy makers through national and international conference presentations, journal publications, Web2.0 resources, and community outreach activities.
DATE: -
TEAM MEMBERS: Ji Shen Blaine Smith
resource evaluation Exhibitions
Merging art and science, "Self Reflected" aims to communicate the incredible complexity of the neural signaling in our brains that makes us who we are. The artists, Dr. Greg Dunn and Dr. Brian Edwards, invented a novel technique called reflective microetching to simulate the microscopic behavior of neurons in the viewer’s brain as they observe this work of art. "Self Reflected" is currently on display in the Your Brain exhibit at The Franklin Institute in Philadelphia. This summative evaluation study explores museum visitors’ behavior, reactions, and learning outcomes as they interact with
DATE:
TEAM MEMBERS: Jayatri Das Alexa Beacham Rachel Swenarton
resource research Media and Technology
Nowadays, India is experiencing a widespread diffusion of science communication activities. Public institutions, non-governmental organisations and a number of associations are busy spreading scientific knowledge not only via traditional media but also through specific forms of interaction with a varied public. This report aims to provide a historical overview of the diffusion of science communication in India, illustrating its current development and its future prospects.
DATE:
TEAM MEMBERS: Marzia Mazzonetto
resource research Media and Technology
The use of photography in the field of psychiatry is an eloquent example of the complex evolution of the relationship between science, communication and society. The research that follows analyses the development of such a relationship in a crucial period of the history of psychiatry: the 1970s. That was the time that witnessed the revolution of a science which admitted the failure of its methods and "instruments", mental hospitals. That was also the time when a profound change took place in the communicative methods of photography related to this uncertain field of knowledge. A group of
DATE:
TEAM MEMBERS: Federica Manzoli
resource project Public Programs
The Museum of Science and Industry (MOSI), in collaboration with the Tampa Community Development Corporation (CDC), will create a youth STEAM (science, technology, engineering, arts, and mathematics) program designed by East Tampa neighborhood participants for the neighborhood. The STEAM program will be a first of its kind in the area and will bring a continuum of experiences in STEAM fields to underserved middle and high school students, as well as volunteer participants, who come from the East Tampa neighborhood. Initial programming topics for career exploration include astronomy/cosmology and space exploration, environmental sciences, engineering, robotics, crime scene forensics, and medical explorations. The project will expand the museum's ability to create a STEAM continuum, increase interest in STEAM careers, and to increase awareness of skills necessary to be successful in STEAM careers.
DATE: -
TEAM MEMBERS: Janet White
resource research Exhibitions
In this article, Michael John Gorman, founding director of Science Gallery at Trinity College Dublin, Ireland, examines the recent emergence of many museum exhibits that meld art and science together to foster creative exploration of science rather than instruction. As an exemplar, Gorman discusses the design of Science Gallery, their "INFECTIOUS" project, and lessons learned.
DATE:
TEAM MEMBERS: Michael John Gorman
resource project Exhibitions
The project "Microetching of the Human Brain" endeavors to create the most comprehensive illustration of the human brain that has ever existed. Investigators will utilize reflective microetching, a process combining mathematics and optics to create an art piece that evolves based on the position of the viewer. Microetching allows the depiction of very complex brain activity at incredibly fine detail. The final piece will be a wall-sized piece of fine art experienced by a diverse population of thousands daily at the Franklin Institute in Philadelphia. Additionally, this project is an educational opportunity for undergraduate students through direct involvement in the creation of the piece. As this project spans many scientific and artistic disciplines, students will be given an opportunity to learn about fields apart from their own, to broaden their skill set, and to learn how to communicate scientific concepts effectively. This project is a collaboration between neuroscientists, engineers, physicists, and artists to address the question of whether art can be used in the dissemination of scientific understanding to new audiences in a way that gives a visceral sense of the underlying concepts. The human brain is massively complex and challenging to portray clearly. Conveying a sense of its complexity through art may inspire an interest in the brain's scientific content and inspire a new generation of neuroscientists. To produce a piece of fine art capable of sufficient detail to depict the brain at near full complexity, the piece will be executed by a technique called reflective microetching. Microetching is a high-resolution lithographic process that patterns a microtopography of periodic ridges into the surface. These ridges are engineered to reflect a point-source illumination toward a viewer when standing at a specific angle relative to the painting. Similar to darkfield microscopy, this can yield incredibly fine detail. Additionally, the angular dependence of the light adds an extra dimension that can be used to convey time, depth, or motion as the viewer walks past. The piece will feature neurons, glia, vasculature, white and gray matter, and reflectively animated circuit dynamics between areas of the brain corresponding to neural processes involved in visual self-recognition. This will infuse the piece with additional meaning, as the circuits activated within viewers' brains will be the same that are depicted in the artwork.
DATE: -
TEAM MEMBERS: Brian Edwards Gregory Dunn