Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
The New York Hall of Science (NYSCI) will convene a two-day participatory design conference of to identify research and education opportunities in informal settings for supporting literacy concerning Artificial Intelligence (AI), especially for diverse and underserved youth whose communities are impacted by the bias in some AI processes. AI uses computer systems that simulate human intelligence. AI systems impact nearly every aspect of daily living, performing tasks underlying navigation apps, facial recognition, e-payments, and social media. AI can perpetuate inequities and biased outcomes in the culture at large. The conference will explore how to promote engagement and conceptual learning among youth about how AI works and what skills are needed to critically use and apply AI. The conference will also explore ways to support the interests of diverse and underserved children and youth in shaping AI and joining the growing STEM workforce that will use AI in their professions.

The conference will identify key features and needs with respect to AI literacy and explore the specific roles that informal learning can play in advancing AI literacy for youth in diverse and underserved communities. Participants in the conference will include designers, learning scientists, researchers, informal and formal educators, and science center professionals. Attendees will work in separate teams and as a group to explore and critique existing AI tools and learning frameworks, discuss lessons learned from promising AI literacy programs, and identify design principles and future directions for research. Specific attention will be paid to informal mechanisms of engagement, promising networks, and research-practice partnerships that take advantage of the unique affordances of informal learning and community services to accelerate AI literacy for historically excluded youth. The insights gained from this work will result in a set of research and programmatic priorities for informal institutions to promote AI literacy in culturally responsive ways. The resulting published guide and community events will broadly disseminate priorities and design principles generated by this convening to help informal learning institutions and community learning organizations identify both assets and priorities for addressing diversity, equity, access, and inclusion issues related to AI literacy.
DATE: -
TEAM MEMBERS: Stephen Uzzo Dorothy Bennett Anthony Negron
resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
Many people with autism are unemployed and isolated because they do not have access to educational opportunities that support them in finding jobs that match their potential. This research seeks to empower adolescents with autism to seek out careers that are well-matched with their strengths and interests. Many people with autism are interested in computing, a marketable skill. This project builds from this interest by developing strategies to effectively engage teenagers with autism. Although people with autism share a diagnosis, each person is unique and has the capacity to become a visionary and transformer in society in their own way. Teenagers with autism will be invited to participate in a game design workshop hosted by an award-winning, not-for-profit Tech Kids Unlimited. Teenagers often enjoy learning how to design games and can learn many useful skills through design. During each workshop, teenagers will rate different teaching strategies using a picture-based survey developed in collaboration with people with autism. It is expected that teenagers with autism who have difficulty focusing to be most engaged by strategies that include multiple types of information (for example, pictures, text, and speech). The team also expects those who are more focused to be most engaged by strategies with fewer sources of information. By developing clear guidelines to help educators match their teaching styles to how different students learn, the project will help them engage youth more effectively. Through an iterative process, the team will revise the game design workshop to make it more engaging for people with different types of autism. New groups of teenagers with autism will participate in improved game design workshops that include an internship in a technology company. An important outcome is to understand which strategies are engaging for young people with autism that help them develop the belief in their skills needed to seek out fulfilling careers. This award is funded by the Advanced Informal STEM Learning program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This Research in Service to Practice project has the following aims: 1) Identify evidence-based strategies to engage youth with autism spectrum disorder (ASD) in informal STEM learning opportunities that are well matched to their attentional profiles, 2) Determine if engaging youth with ASD in informal STEM learning opportunities increases their STEM self-efficacy, and 3) Determine if engagement with STEM internship activities is associated with increased interest in STEM careers and career decision-making self-efficacy. Principles of Universal Design (UD) and Mayer's principles of effective multimedia instruction are frameworks employed to identify instructional strategies that are emotionally engaging for youth with diverse attentional profiles. The degree to which attentional differences contribute to different patterns of emotional engagement with informal STEM learning will be investigated. Guided by assessments of youth's engagement with different learning opportunities, 'diversity blueprints' or specific instructional strategies that help youth with diverse attentional profiles engage will be developed. After identifying strategies to engage neurodivergent (neurologically diverse) youth in informal STEM learning opportunities, the extent to which these strategies generalize to STEM internship sites will be explored. The team will study potential specificity of the types of contexts that promote different types of self-efficacy, with engagement with extracurricular STEM learning opportunities expected to preferentially target STEM self-efficacy while engagement with internships targets career decision-making self-efficacy. Although UD is often endorsed to promote STEM learning among students with disabilities, the proposed research would be the first iterative adaptation of instructional strategies designed to engage neurodivergent teens in informal STEM learning guided by a systematic analysis of how they engage with and feel about instructional strategies. Project deliverables include workshops for local after-school program providers, publications, a project website, and a multimodal guide of the process of developing 'diversity blueprints' and how to apply them for informal STEM educators and researchers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Amy Hurst Katie Gillespie