Skip to main content

Community Repository Search Results

resource project Media and Technology
"Ongoing collaboration-wide IceCube Neutrino Observatory Education and Outreach efforts include: (1) Reaching motivated high school students and teachers through IceCube Masterclasses; (2) Providing intensive research experiences for teachers (in collaboration with PolarTREC) and for undergraduate students (NSF science grants, International Research Experience for Students (IRES), and Research Experiences for Undergraduates (REU) funding); and (3) Supporting the IceCube Collaboration’s communications needs through social media, science news, web resources, webcasts, print materials, and displays (icecube.wisc.edu). The 2014 pilot IceCube Masterclass had 100 participating students in total at five institutions. Students met researchers, learned about IceCube hardware, software, and science, and reproduced the analysis that led to the discovery of the first high-energy astrophysical neutrinos. Ten IceCube institutions will participate in the 2015 Masterclass. PolarTREC teacher Armando Caussade, who deployed to the South Pole with IceCube in January 2015, kept journals and did webcasts in English and Spanish. NSF IRES funding was approved in 2014, enabling us to send 18 US undergraduates for 10-week research experiences over the next three years to work with European IceCube collaborators. An additional NSF REU grant will provide support for 18 more students to do astrophysics research over the next three summers. At least one-third of the participants for both programs will be from two-year colleges and/or underrepresented groups. "
DATE: -
TEAM MEMBERS: Jim Madsen Silvia Bravo Gallart
resource project Media and Technology
The mission of QESST public outreach is to provide a platform for engaging the community; students, parents, teachers, and the general public; in discussions about solar energy. Although there is a growing interest in advances of solar energy, many misconceptions prevail amongst the general community. Community outreach serves as a mechanism for engaging people and drawing them in. It is often the hook that creates interest in parents who pass that interest onto their children, or lures young students into more formalized QESST programs. Our outreach events range in scale from small workshops, large university wide open houses, and participation in educational television.
DATE: -
TEAM MEMBERS: Tiffany Rowlands
resource project Media and Technology
Xraise provides experiences that empower individuals by making science familiar and accessible. Immersed with scientists themselves, we facilitate hands-on, minds-on activities that involve the direct exploration of physics phenomena. Our relationship with K12 students, educators and community partners provides us with a platform for exploring personal intuitions, developing understandings and fostering excitement in science.
DATE: -
TEAM MEMBERS: Lora Hine Erik Herman
resource project Media and Technology
This award will support the production of a two-hour documentary about one of the great milestones in the history of flight: the 1935 crossing of the Pacific Ocean by a Pan American Airways flying boat called the China Clipper. The Pacific crossing was a technological achievement that captured the world’s imagination in much the way the space program did a generation later. It also began the era of transoceanic flight – an era that would lead to profound changes in American foreign policy, commerce and the very way Americans saw the world. Produced by one of the makers of "Forgotten Genius," NOVA's NEH-funded, Emmy Award-winning biography of black chemist Percy Julian, "Across the Pacific" will combine dramatic re-enactments, interviews with scholars, and films and photographs drawn from the rich archival record about the early days of commercial aviation.
DATE: -
TEAM MEMBERS: Stephen Lyons
resource project Media and Technology
The project will develop and study the impact of science simulations, referred to as sims, on middle school childrens' understanding of science and the scientific process. The project will investigate: 1) how characteristics of simulation design (e.g., interface design, visual representations, dynamic feedback, and the implicit scaffolding within the simulation) influence engagement and learning and how responses to these design features vary across grade-level and diverse populations; 2) how various models of instructional integration of a simulation affect how students interact with the simulation, what they learn, and their preparation for future learning; 3) how these interactions vary across grade-level and diverse populations; and 4) what critical instructional features, particularly in the type and level of scaffolding, are needed. Working with teachers, the team will select 25 existing sims for study. Teachers and students will be interviewed to test for usability, engagement, interpretation, and learning across content areas. The goal will be to identify successful design alternatives and to formulate generalized design guidelines. In parallel, pull-out and classroom-based studies will investigate a variety of use models and their impact on learning. Ten new simulations will then be developed to test these guidelines. Products will include the 35 sims with related support materials available for free from a website; new technologies to collect real-time data on student use of sims; and guidelines for the development of sims for this age population. The team will also publish research on how students learn from sims.
DATE: -
TEAM MEMBERS: Katherine Perkins Daniel Schwartz Michael Dubson Noah Podolefsky
resource project Media and Technology
The Physics and Chemistry Education Technology (PhET) Project is developing an extensive suite of online, highly-interactive simulations, with supporting materials and activities for improving both the teaching and learning of physics and chemistry. There are currently over 70 simulations and over 250 associated activities available for use from the PhET website (http://phet.colorado.edu). These web-based resources are impacting large number of students. Per year, there are currently over 4 million PhET simulations run online and thousands of full website downloads for offline use of the simulations. The goal is that this widespread use of PhET's research-based tools and resources will improve the education of students in physics and chemistry at colleges and high schools throughout the U.S. and around the world. This PhET project combines a unique set of features. First, the simulation designs and goals are based on educational research. Second, using a team of professional programmers, disciplinary experts, and education research specialists enables the development of simulations involving technically-sophisticated software, graphics, and interfaces that are highly effective. Third, the simulations embody the predictive visual models of expert scientists, allowing many interesting advanced concepts to become widely accessible and revealing their relevance to the real world. And finally, the project is actively involved in research to better understand how the design and use of simulations impacts their effectiveness - e.g. investigating questions such as "How can these new technologies promote student understanding of complex scientific phenomena?" and "What factors inhibit or enhance their use and effectiveness?".
DATE: -
TEAM MEMBERS: Katherine Perkins Michael Dubson Noah Finkelstein Robert Parson Carl Weiman