Skip to main content

Community Repository Search Results

resource project Public Programs
The University of Alaska Fairbanks will partner with the National Optical and Astronomy Observatory, the University of Alaska Museum of the North, and the University of Washington-Bothell to bring biomaterials, optics, photonics, and nanotechnology content, art infused experiences, and career awareness to art-interested girls. This full scale development project, Project STEAM, will explore the intersections between biology, physics, and art using advanced technologies at the nano to macro scale levels. Middle school girls from predominately underrepresented Alaskan Native, Native American (Tohono O'odham, Pascula Yaqui) and Hispanic groups, their families, teachers, and Girl Scout Troop Leaders in two site locations- Anchorage, Alaska and Tucson, Arizona will participate in the project. Centered on the theme "Colors of Nature," Project STEAM will engage girls in science activities designed to enhance STEM learning and visual-spatial skills. Using advanced technologies, approximately 240 girls enrolled in the Summer Academy over the project duration will work with women scientist mentors, teachers, and Girl Scout Troop Leaders to create artistic representations of natural objects observed at the nano and macro scale levels. Forty girls will participate in the Summer Academy in year one (20 girls per site- Alaska and Arizona). In consequent years, approximately180 girls will participate in the Academy (30 girls per site). Another 1,500 girls are expected to be reached through their Girl Scout Troop Leaders (n=15) who will be trained to deliver a modified version of the program using specialized curriculum kits. In addition, over 6,000 girls and their families are expected to attend Project STEAM Science Cafe events held at local informal science education institutions at each site during the academic year. In conjunction with the programmatic activities, a research investigation will be conducted to study the impact of the program on girls' science identity. Participant discourse, pre and post assessments, and observed engagement with the scientific and artistic ideas and tools presented will be examined and analyzed. A mixed methods approach will also be employed for the formative and summative evaluations, which will be conducted by The Goldstream Group. Ultimately, the project endeavors to increase STEM learning and interest through art, build capacity through professional development, advance the research base on girls' science identity and inspire and interest girls in STEM careers.
DATE: -
TEAM MEMBERS: Laura Conner Stephen Pompea Mareca Guthrie Carrie Tzou
resource research Media and Technology
Using data from interviews with 133 physicists and biologists working at elite research universities in the United States, we analyze narratives of outreach. We identify discipline-specific barriers to outreach and gender-specific rationales for commitment. Physicists view outreach as outside of the scientific role and a possible threat to reputation. Biologists assign greater value to outreach, but their perceptions of the public inhibit commitment. Finally, women are more likely than men to participate in outreach, a commitment that often results in peer-based informal sanctions. The study
DATE:
TEAM MEMBERS: David Johnson Anne Ecklund Anne Lincoln
resource project Public Programs
In the Communities of Learning for Urban Environments and Science (CLUES) project, the four museums of the Philadelphia-Camden Informal Science Education Collaborative worked to build informal science education (ISE) capacity in historically underserved communities. The program offered comprehensive professional development (PD) to Apprentices from 8-11 community-based organizations (CBO), enabling them to develop and deliver hands-on family science workshops. Apprentices, in turn, trained Presenters from the CBOs to assist in delivering the workshops. Families attended CLUES events both at the museums and in their own communities. The events focused on environmental topics that are especially relevant to urban communities, including broad topics such as climate change and the energy cycle to more specific topics such as animals and habitats in urban neighborhoods.
DATE: -
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell
resource project Public Programs
Since August of 2011, Project iLASER (Investigations with Light And Sustainable Energy Resources) has engaged children, youth and adults in public science education and hands-on activities across the entire length of the U.S.-Mexico border, from the Pacific Ocean to the Gulf of Mexico. The two main themes of Project iLASER activities focus on sustainable energy and materials science. More than 1,000 children have been engaged in the hands-on activities developed through Project iLASER at 20+ sites, primarily in after-school settings in Boys & Girls Clubs. Sites include Boys & Girls Clubs in California (Chula Vista, Imperial Beach, El Centro and Brawley); Arizona (Nogales); New Mexico (Las Cruces); and Texas (El Paso, Midland-Odessa, Edinburg and Corpus Christi). The project was co-funded between the NSF Division of Chemistry (CHE) and the Division of Research on Learning in Formal and Informal Settings (DRL).
DATE: -
TEAM MEMBERS: Southwestern College David Brown David Hecht
resource research Media and Technology
Physics Today Quick Study Article
DATE:
TEAM MEMBERS: Universite Paris-Sud Julien Bobroff
resource project Public Programs
This award continues funding of a Center to conduct research and education on the interactions of nanomaterials with living systems and with the abiotic environment. The goals of this Center are to develop a predictive understanding of biological and ecological toxicology for nanomaterials, and of their transport and transformation in the environment. This Center engages a highly interdisciplinary, multi-institutional team in an integrated research program to determine how the physical and chemical properties of nanomaterials determine their environmental impacts from the cellular scale to that of entire ecosystems. The research approach promises to be transformative to the science of ecotoxicology by combining high throughput screening assays with computational and physiological modeling to predict impacts at higher levels of biological organization. The Center will unite the fields of engineering, chemistry, physics, materials science, cell biology, ecology, toxicology, computer modeling, and risk assessment to establish the foundations of a new scientific discipline: environmental nanotoxicology. Research on nanomaterials and development of nanotechnology is expanding rapidly and producing discoveries that promise to benefit the nation?s economy, and improve our ability to live sustainably on earth. There is now a critical need to reduce uncertainty about the possible negative consequences of nanomaterials in the environment, while at the same time providing guidelines for their safe design to prevent environmental and toxicological hazards. This Center addresses this societal need by developing a scientific framework of risk prediction that is paradigm-shifting in its potential to keep pace with the commercial expansion of nanotechnology. Another impact of the Center will be development of human resources for the academic community, industry and government by training the next generation of nano-scale scientists, engineers, and regulators to anticipate and mitigate potential future environmental hazards of nanotechnology. Partnerships with other centers will act as powerful portals for the dissemination and integration of research findings to the scientific, educational, and industrial communities, both nationally and internationally. This Center will contribute to a network of nanotechnology centers that serve the national needs and expand representation and access to this research and knowledge network through programs directed at California colleges serving underrepresented groups. Outreach activities, including a journalist-scientist communication program, will serve to inform both experts and the public at large about the safety issues surrounding nanotechnology and how to safely produce, use, and dispose of nanomaterials.
DATE: -
TEAM MEMBERS: Andre Nel Yoram Cohen Hilary Godwin Arturo Keller Patricia Holden
resource project Public Programs
Dynamic Patterns Theatre, an independent production company, is bringing a unique educational and entertainment experience to Central Illinois with upcoming performances of QED: A Play by Peter Parnell. Featuring a day in the life of Nobel Laureate Richard Feynman, the show interweaves strands from his professional biography, including the Manhattan project and the Challenger inquiry, and provides a window into many of his personal emotions and challenges, all the while offering several great discussions of physics ideas presented for a general audience. As the first production of a new "Science at the Theatre Series", QED (which stands for quantum electrodynamics, the physics model for which Feynman was awarded the Nobel Prize) will be incorporated with a unique informal educational opportunity along with the traditional theatrical experience for patrons to enjoy. Dynamic Patterns Theatre is collaborating with local physicists and teachers to host an informal forum highlighting aspects of Feynman's life and career and feature science topics discussed in the play. With an interactive format of "Ask a Physicist", patrons will be free to ask the panel any questions they might have about science for a unique opportunity to increase their appreciation for science and how the Universe works, if only just a bit. "My academic background is in physics, so I am personally excited to merge my theatre and science interests into a new cultural event that has not be attempted before in Central Illinois", said Matthew T. Dearing, co-producer of dynamic patterns theatre and director for QED. Richard Feynman is portrayed by Al Scheider, a long-time regional actor from Decatur who has performed in over sixty community theatre productions in thirty-seven years, and has directed theater for twelve years. The supporting role of Miriam Field, a young Caltech student, is played by Lynexia Dawn Chigges, who is an LPN with Memorial Physician Services, and has performed on stages from San Diego to Springfield, Illinois. QED: A Play performs for three weekends in three communities, with the opening on September 13, 14 at 8:00 pm in Springfield at the Hoogland Center for the Arts, September 20, 21 at 7:30 pm in Jacksonville at the Playhouse on the Square, and October 4, 5 at 8:00 pm in Decatur and the Madden Arts Center.
DATE:
TEAM MEMBERS: Matthew T. Dearing
resource project Public Programs
This Pathways Project connects rural, underserved youth and families in Eastern Washington and Northern Idaho to STEM concepts important in sustainable building design. The project is a collaboration of the Palouse Discovery Science Center (Pullman, WA), Washington State University and University of Idaho, working in partnership with rural community organizations and businesses. The deliverables include: 1) interactive exhibit prototype activities, 2) a team cooperative learning problem-solving challenge, and (3) take-home materials to encourage participants to use what they have learned to investigate ways to make their homes more energy-efficient and sustainable. The project introduces youth and families to the traditionally difficult physics concept of thermal energy, particularly as it relates to sustainable building design. Participants explore how building materials and their properties can be used to control all three types of heat transfer: conduction, convection, and radiation. The interactive exhibit prototypes are coupled with an Energy Efficient Engineering Challenge in which participants, working in cooperative learning teams, use information learned from the exhibit prototype activities to retrofit a model house, improving its energy efficiency. The project components are piloted at the Palouse Discovery Science Center, and then travel to three underserved rural/tribal communities in Northern Idaho and Eastern Washington. Front-end and formative evaluation studies will demonstrate whether this model advances participant understanding of and interest in STEM topics and careers. The project will yield information about ways that other ISE practitioners can effectively incorporate cooperative learning strategies in informal settings to improve the transferability of knowledge gained from exhibits to real-world problem-solving challenges, especially for rural and underserved audiences. This project will also provide the ISE field with: 1) a model for increasing the capacity of small, rural science centers to form collaborative regional networks that draw on previously unused resources in their communities and provide more effective outreach to the underrepresented populations they serve, and 2) a model for coupling cooperative learning with outreach exhibits, providing richer experiences of active engagement.
DATE: -
TEAM MEMBERS: Kathleen Ryan Kathy Dawes Christine Berven Anne Kern Patty McNamara
resource project Media and Technology
The objective of this youth media project is to provide 14-24 year olds with training and hands-on experience in engineering, and the physical and biological sciences. The project is designed around core practices that engage youth in original research and inquiry through experimentation, development, and creative use of new technologies and tools to communicate STEM to the public. Youth Radio project participants in Oakland, CA, Atlanta, GA and Washington, DC include 540 youth, 80% of whom are low-income and/or youth of color, plus another 400 youth via off-site outreach in schools and community centers. Core deliverables include: (1) "Brains and Beakers," eight live events per year where a visiting STEM researcher brings his/her work out of the lab and onto the stage at Youth Radio facilities, demonstrating key principles and discoveries and interacting with youth participants; (2) "Youth Radio Investigates," an annual 6-part multimedia series, where youth partner with university and industry-based researchers to explore the veracity of scientific claims applied to products and services and they use every day; (3) The "Application Development Lab," where youth develop, create and disseminate online embeddable and downloadable applications (12 annually) that serve real needs in youth communities. The digital media produced by the youth will be broadcast by National Public Radio and distributed online through various sites including iTunes and BoingBoing.net, one of the most frequently visited technology-focused sites on the web. Project advisors include STEM researchers in universities as well as highly experienced and successful new media technology developers. Project partners include National Public Radio, KQED, the California Academy of Sciences, and the Oakland Unified School District. This project builds on the successful prior work (NSF #0610272) that initiated a Science and Technology program within the Youth Radio organization. The summative evaluation by Rockman et al will measure how the program affects students' science and technology knowledge, skills, and attitudes. It will build on the evaluation from the prior NSF funded project (#0610272) that highlighted the organizational and staff growth processes as Youth Radio discovered how to design and implement successful, sustainable STEM programs. Rockman will evaluate the new programs (Youth Investigates, Brains and Beakers, and the Application Lab), measuring the following STEM-related student outcomes/impacts: perceptions of selves as producers/creators of science or technology; attitudes toward science and perceptions of scientists; understanding the process of scientific inquiry and research and/or technology skills development; and understanding or interest in careers in science or technology (based on National Research Council report, 2009). Data will be collected from the youth at the Oakland site and from the other Youth Radio bureaus to determine which aspects of the program transfer to multiple sites and which ones are unique to a specific location or set of circumstances. Methods include surveys of student attitudes, participant focus groups, interim assessments, objective skills assessments, and interviews. This project provides an innovative new model for collaborations between STEM researchers and under-represented youth resulting in digital media that impacts the youth as well as the public's understanding and engagement in science.
DATE: -
TEAM MEMBERS: Ellin O'Leary
resource project Public Programs
The Education and Outreach (EO) program is an essential part of the CRISP MRSEC located at Yale and SCSU. CRISP offers activities that promote the interdisciplinary and innovative aspects of materials science to a diverse group of participants. The objective of the program is to enhance the education of future scientists, science teachers, K-12 students, parents, and the general public. CRISP’s primary informal science activities include public lectures, family science nights, New Haven Science Fair and museum partnerships.
DATE: -
TEAM MEMBERS: Yale University Connecticut State University Christine Broadbridge
resource project Media and Technology
The mission of QESST public outreach is to provide a platform for engaging the community; students, parents, teachers, and the general public; in discussions about solar energy. Although there is a growing interest in advances of solar energy, many misconceptions prevail amongst the general community. Community outreach serves as a mechanism for engaging people and drawing them in. It is often the hook that creates interest in parents who pass that interest onto their children, or lures young students into more formalized QESST programs. Our outreach events range in scale from small workshops, large university wide open houses, and participation in educational television.
DATE: -
TEAM MEMBERS: Tiffany Rowlands