Skip to main content

Community Repository Search Results

resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell
resource project Afterschool Programs
Project LIFTOFF works with local, regional, and national partners to engineer statewide systems for Informal Science Education that inspire: YOUTH to pursue STEM education and careers through increased opportunities for quality, hands-on STEM learning. AFTERSCHOOL STAFF to facilitate STEM learning experiences that contribute to the overall STEM education and aspirations of youth in their programs. PROGRAM ADMINISTRATORS to encourage and support staff in the integration of STEM enrichment into the daily programming. STATE LEADERS to sustain and expand afterschool learning opportunities so that all students have access to engaging STEM experiences outside of the regular school day. Project LIFTOFF is dedicated to the development of the following essential elements of statewide systems for informal science education:


Access to appropriate STEM Curriculum for youth of all ages, abilities, and socio-cultural backgrounds that meets the needs and interests of individual community programs
Systematic STEM Professional Development that matches individual skills in positive youth development with abilities to facilitate discovery and science learning
A diverse Cadres of Trainers who will deliver the professional development, technical assistance and curriculum dissemination in their local communities
Authentic Evaluation of informal science efforts that determine the impacts on youth aspirations and the capacity of youth programs to provide quality STEM experiences
Local STEM education leadership to identify the ways in which collaborative education efforts can advance the development of 21st Century Skills and the preparedness for STEM workforce and higher education
Partnerships in support of youth development and informal science education that convene local, regional, and statewide organizations and stakeholders


To advance national initiatives and states' sySTEM engineering efforts, LIFTOFF coordinates an annual convening, the Midwest Afterschool Science Academy, that brings together national informal science experts, system leaders and youth development professionals to elevate the levels of science after school. The 5th MASA will be in the spring of 2014 in Kansas City, MO
DATE:
TEAM MEMBERS: Missouri AfterSchool Network Jeff Buehler
resource project Public Programs
This Nanoscale Science and Engineering Center (NSEC) is a collaboration among Harvard University, the Massachusetts Institute of Technology, the University of California—Santa Barbara, and the Museum of Science—Boston with participation by Delft University of Technology (Netherlands), the University of Basel (Switzerland), the University of Tokyo (Japan), and the Brookhaven, Oak Ridge, and the Sandia National Laboratories. The NSEC combines "top down" and "bottom up" approaches to construct novel electronic and magnetic devices with nanoscale sizes and understand their behavior, including quantum phenomena. Through a close integration of research, education, and public outreach, the Center encourages and promotes the training of a diverse group of people to be leaders in this new interdisciplinary field.
DATE: -
TEAM MEMBERS: Robert Westervelt Bertrand Halperin
resource project Media and Technology
Thinking SMART is a comprehensive five-year program that will encourage young women to pursue careers in science, mathematics and technology. The project focuses on girls ages 12-18, and will especially target those who are underserved and underrepresented in the sciences, including girls from diverse backgrounds and persons with disabilities. Key elements include four science/engineering module options, a two-tiered mentoring component, training, resource materials, online activities and an awards program. The modules (Material Girls, Eco Girls, Galactic Girls, Net Girls), focus on engineering, ecology, physics and computer science respectively, and will be aligned with national standards. The modules are implemented during the school year and include weekly programming, a summer camp and a spring "Women in Science and Engineering" conference organized by girls. Weekly meetings are augmented by online activities, in which girls interact with other participants and mentors, publish reports and obtain career information. Additionally, participants who complete all four modules are eligible to become paid mentors for younger participants. Five publications will be produced to support the program, including manuals for mentors (both adults and youth), module activities, a parent guide and a guide for implementation sites on community partnerships. Thinking SMART materials will be developed and piloted tested at eight sites in conjunction with Girls, Inc. affiliates in Nashua, NH, Worcester, MA, Oakridge, TN and Shelbyville, IN, with input from the Society of Women Engineers. Extensive training will also be provided for pilot programs and future dissemination. Finally the E3 Awards Program will motivate implementation sites to create high quality local programs. It is anticipated that more than 1,500 Girls, Inc. affiliates will adopt "Thinking SMART."
DATE: -
TEAM MEMBERS: Brenda Stegall Janet Stanton Heather Johnston Nicholson Shalonda Murray Joe Martinez
resource project Media and Technology
The Educational Broadcasting Corporation (WNET in New York) is developing and producing a new public television project exploring cutting-edge technology. The project consists of an eight-part hourly broadcast component; six 60-second "mini-programs;" a World Wide Web component; and extensive educational outreach targeted to adults aged 25-39 and older. The topics for the eight programs in season one are: Replacements - prosthetic devices and biologically electronic artificial body parts In Search of Eve - the race to decode the human genome Light of the 21st Century - Fiber Optics Nanotechnology - molecular manipulation of materials Technospy - technologies used to gain information Sports Technology - the pursuit of better equipment and training regimes Artificial Intelligence - efforts to create computers the mimic human intelligence Appropriate Technologies - technologies that use local, inexpensive material Beth Hoppe, WNET's Director of Science Programs will serve as Executive Producer for the series. Each of the programs would be produced by an independent producer selected by WNET. Content advisors include: Angela Christiano, Departments of Dermatology, Genetics and Development, Columbia University; Sheila Sen Jasanoff, Harvard University JFK School of Government; Horace Freeland Judson, Center for History of Recent Science, George Washington University; Michio Kaku, theoretical physicist, CUNY and host, Explorations radio series; Wilfred Pinfold, Microprocessor Research Labs, Intel Corp.; and Barbara Wilson, chief technologist, NASA's Jet Propulsion Laboratory
DATE: -
TEAM MEMBERS: Beth Hoppe Tamara Robinson William Grant Barbara Flagg
resource evaluation Media and Technology
This report summarizes evaluative findings from a project titled “What Curiosity Sounds Like: Discovering, Challenging, and Sharing Scientific Ideas” (a.k.a.: “Discovery Dialogues”). The project, a Full-Scale development project funded by the National Science Foundation as part of its Advancing Informal Science Learning (AISL) program, explored new ways to actively engage both lay and professional audiences, and foster meaningful communication between scientists and the general public. Appendix includes survey and interview questions.
DATE:
TEAM MEMBERS: New York Public Radio - WNYC Jennifer Borland