Skip to main content

Community Repository Search Results

resource research Media and Technology
Through the years, Majorana's life - and his mysterious disappearance in particular - inspired manifold representations. The wide range of links to science, philosophy and literature have allowed deep reflections crossing the borders of genre: from theatre to fiction, from essays to novels and cartoons. Reconstructing the character of Majorana by thinking back to all the interpretations he has been given allows us to place him in a wider and more organic context, which goes beyond the functional aspects of fiction. In this wider prospective, we can clearly see why the still unresolved Majorana
DATE:
TEAM MEMBERS: Frencesco Scarpa
resource research Public Programs
This paper describes how a universal language for notating dance and, more generally, movement was elaborated, known as "Kinetography Laban", or rather "Labanotation". It was devised by choreographer and movement theorist Rudolf von Laban, who outlined it for the first time in 1928, in the journal Schrifttanz. His system differs from precedent notation systems in that Labanotation is rigorous and universal, as it is based not on one particular style or technique but on the general of kinetics underlying human motion. Its geometrical and abstract symbols also free it from language constraints
DATE:
TEAM MEMBERS: Silvana Barbacci
resource project Public Programs
The Liz Lerman Dance Exchange, in partnership with several universities and a science advisory committee of distinguished international researchers in physics and astronomy, is producing "The Matter of Origins," a two-part experimental program that engages the public in explorations of the nature of beginnings and the physics of the origin of matter. Act I takes place in a theater where audiences will experience a dance performance illuminated by video and a vivid soundscape. Act II takes place in an adjacent space where audiences, who will be seated with scientists, historians, philosophers, and religious leaders, can participate in facilitated dialogue about the nature of origins in an immersive environment that incorporates dance, projected images, and provocative questions. The program will be implemented around the country, initially at four universities, with possible expansion to additional venues. The goals of this EAGER project are (1) to develop an innovative model for using dance, digital media, and structured dialogue to attract and engage public audiences in science content and processes and (2) to explore how artistic practices may have broader applications with respect to science learning and research. The intention is to explore how science can be represented in the art and in the experience and not simply interpreted into abstract choreographic expression with a program note. The program elements and outcomes will be evaluated by researchers from Michigan State University who will study impacts on the public and on participating professionals - dancers, scientists, etc. Dissemination of results will be to professional communities in the sciences, arts and informal science education.
DATE: -
TEAM MEMBERS: Liz Lerman
resource project Public Programs
The Rochester Institute of Technology's National Technical Institute for the Deaf (NTID) and Center for Computational Relativity and Gravitation (CCRG) will collaborate on a CRPA project designed to develop a dance-based performance to educate deaf and hard of hearing students on astrophysics concepts. This project seeks to address the following goals: 1) provide all audience members with access to scientific information in an inherently engaging and stimulating manner; 2) facilitate the acquisition of scientific knowledge in all audience members, including deaf and hard-of-hearing individuals, with special reference to general information and basic concepts from the fields of gravitational physics and astrophysics; and 3) stimulate general interest in STEM fields within all audience members. An extensive team of physicists, arts faculty, computer scientists, performance experts, and evaluators have assembled to translate original research on gravity-based astrophysics, including collision events between black-holes and neutron-stars, entire galaxies, and the central black-hole engine that powers active galactic nuclei, into novel educational presentations. The original science to be presented was generated in part by the scientists at the Center for Computational Relativity and Gravitation. Project deliverables include live performances and a project website with educational materials and a virtual tour of the recorded performance. The live performances will include dance and computer generated visualizations of space phenomena, supplemented with discussion and interactive components to engage audiences both before and after the presentation. The mixed-method evaluation will provide insights into how the medium of dance can be used to engage audiences in STEM fields and increase the understanding of STEM content areas which have had little previous investigation, but may be highly relevant to the engagement of underserved audiences. Performances are planned for select sites in New York, Ohio, Connecticut, Rhode Island, Washington, DC, Pennsylvania and Maryland. It is estimated that the project will directly impact 7,000 individuals, approximately half of whom will be deaf or hard or hearing. Deaf and hard of hearing populations are greatly underserved in science education. This project is an effort to bridge that gap by providing creative models for communicating to the public on contemporary science concepts. Learning outcomes for the target audience include increasing awareness and interest in STEM, acquisition of information and basic concepts from the fields of gravitational physics and astrophysics, and enhancing awareness of relationships among science and the arts. Project activities will be disseminated through the website hosted by the Rochester Institute of Technology, as well as social networking sites including Facebook, Twitter, and Google+. The project will also be promoted through science festivals and media events.
DATE: -
TEAM MEMBERS: Manuela Campanelli Hans-Peter Bischof Jacob Noel-Storr
resource research Public Programs
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. Madison Area Technical College, in collaboration with the Institute for Chemical Education at the University of Wisconsin-Madison, the American Chemical Society (ACS) and area science centers and museums will create a national program to disseminate the Fusion Science Theater (FST) model which directly engages children in playful, participatory, and inquiry-based science learning of chemistry and physics topics.
DATE:
TEAM MEMBERS: Holly Walter Kerby
resource project Public Programs
Dynamic Patterns Theatre, an independent production company, is bringing a unique educational and entertainment experience to Central Illinois with upcoming performances of QED: A Play by Peter Parnell. Featuring a day in the life of Nobel Laureate Richard Feynman, the show interweaves strands from his professional biography, including the Manhattan project and the Challenger inquiry, and provides a window into many of his personal emotions and challenges, all the while offering several great discussions of physics ideas presented for a general audience. As the first production of a new "Science at the Theatre Series", QED (which stands for quantum electrodynamics, the physics model for which Feynman was awarded the Nobel Prize) will be incorporated with a unique informal educational opportunity along with the traditional theatrical experience for patrons to enjoy. Dynamic Patterns Theatre is collaborating with local physicists and teachers to host an informal forum highlighting aspects of Feynman's life and career and feature science topics discussed in the play. With an interactive format of "Ask a Physicist", patrons will be free to ask the panel any questions they might have about science for a unique opportunity to increase their appreciation for science and how the Universe works, if only just a bit. "My academic background is in physics, so I am personally excited to merge my theatre and science interests into a new cultural event that has not be attempted before in Central Illinois", said Matthew T. Dearing, co-producer of dynamic patterns theatre and director for QED. Richard Feynman is portrayed by Al Scheider, a long-time regional actor from Decatur who has performed in over sixty community theatre productions in thirty-seven years, and has directed theater for twelve years. The supporting role of Miriam Field, a young Caltech student, is played by Lynexia Dawn Chigges, who is an LPN with Memorial Physician Services, and has performed on stages from San Diego to Springfield, Illinois. QED: A Play performs for three weekends in three communities, with the opening on September 13, 14 at 8:00 pm in Springfield at the Hoogland Center for the Arts, September 20, 21 at 7:30 pm in Jacksonville at the Playhouse on the Square, and October 4, 5 at 8:00 pm in Decatur and the Madden Arts Center.
DATE:
TEAM MEMBERS: Matthew T. Dearing
resource project Media and Technology
The Exploding Optic Incredible was an experiment in expanding the boundaries of art and music with science and technology. Ostensibly a multi-media rock concert as a fund raiser for Marshall Barnes' drug free creativity efforts, it took Andy Warhol's Exploding Plastic Inevitable concept of the 1960s into unchartered territory driven by Marshall's inspiration through discussions with Omni magazine's Dick Teresi and Pamela Weintraub and Gene Youngblood's book, Expanded Cinema. Marshall incorporated 1970s era slide and film projection light show effects, with dance lights, massive strobes, spotlights, and big screen video projection that showed customized and original video special effects while bands performed, and music videos in-between accompanied by lighting effects. The first multi-media rock concert of the 1990s, the January 18, 1990 event at the Newport Music Hall was also a test for the public's reaction to over stimulation through sight and sound, the results leading to exploration and ultimate creation of psychoactive entertainment technology later that year and the formation of new technological architectures for entertainment and learning that have yet to be presented but exist in design form.
DATE:
TEAM MEMBERS: Marshall Barnes
resource research Theater Programs
Presentation on NSF grant DRL-1114568 (""Fusion Science Theater National Training and Dissemination Program"") presented at the CAISE Convening on Professional Development and Informal Science Education, February 2nd, 2012.
DATE:
TEAM MEMBERS: Holly Walter Kerby
resource project Public Programs
The Fusion Science Theater National Training and Dissemination Program builds on the success of the Fusion Science Theater (FST) planning grant (DRL 07-32142). Madison Area Technical College, in collaboration with the Institute for Chemical Education at the University of Wisconsin-Madison, the American Chemical Society (ACS) and area science centers and museums will create a national program to disseminate the FST model which directly engages children in playful, participatory, and inquiry-based science learning of chemistry and physics topics. The primary target audience is children aged 4-11, while undergraduate chemistry students, faculty, and formal and informal educators comprise the secondary professional audience. The project will result in the development of a robust, creative, and highly visible national dissemination program. The National Training and Dissemination Program includes three deliverables. First, a Distance Performance Training Program will be developed to teach groups of undergraduate students, faculty, and educators how to perform FST Science Investigation (SI) Shows. The Training Program includes a Performance Training Package and a 3-day Performance Training Workshop. The Performance Training Package will be comprised of training videos, performances videos, scripts, rehearsal schedules, and training exercises. These materials will be pilot tested while training representatives of five groups from around the country to perform SI Shows during the Performance Training Workshop at Madison Area Technical College in summer 2012. Participants will be selected from ACS undergraduate groups, outreach specialists, and museum professionals. Workshop participants then return to their home institutions and lead their groups through the improved Performance Training Package delivered via Moodle, with support from FST team members and social networking tools. The second deliverable is the FST Methods Workshop. The Methods Workshop is designed to teach formal and informal educators to use selected methods (Investigation Question, Embedded Assessment, and Act-It-Out) in their outreach efforts and classroom teaching. Four workshops will be presented at national meetings and at the invitation of colleges, universities, and science centers. Follow-up with workshop participants will be mediated through an online forum to encourage experimentation, modification, and dissemination of a second generation of FST activities. The final project deliverable is the development and implementation of a Promotion and Recruitment Plan to connect professional audiences with FST. The Distance Performance Training Program and workshops will be evaluated using mixed methods, while embedded assessment will be utilized to measure the impact on youth participants attending SI shows to determine the overall effectiveness the Distance Performance Training. This project is designed to have important impacts on STEM education and society. The proposed dissemination program brings innovative models and methods into the hands of informal science education practitioners who can use them to engage local audiences and enhance their own teaching and communication practices. Finally the project offers likely benefits for society through the creation and dissemination of innovative practices to combat science illiteracy, diminishing pools of scientists and engineers, lack of understanding about the nature of science, and the achievement gap that exacerbates these problems. This project could be transformative in informal science education as SI Shows use theater to engage audiences in multiple aspects of science learning. It is anticipated that this project will reach up to 2,500 individuals in public and professional audiences.
DATE: -
resource project Public Programs
Madison Area Technical College will refine and evaluate the effectiveness of Fusion Science Theater (FST), a combination of theater, science demonstrations, and participatory components, as an ISE teaching model, to test its transferability through development and trials of an exportable version (Science-in-a-Box), and to recruit appropriate partners nationally in preparation for a larger scale implementation and evaluation. A Fusion Science Theater event utilizes the collaborative effort of applied expertise in science, theater and education. These events support playful interactions as characters engage the emotions of the audience. The Act-It Out sequences invite children and parents to become involved in modeling scientific concepts, thus creating an environment where learning is the product of social interaction and kinesthetic, affective and interpersonal learning. To provide proof-of-concept that this a transferable model, an independent, interdisciplinary team from the University of Wisconsin, Madison Biotechnology Center will produce their own FST event that will be evaluated and compared to an existing FST program. The Madison Children's Museum will partner as a venue for the event and provide expertise in the planning process. The ultimate project resulting from this planning would include workshops to train collaborative teams from around the country in the principles and practices of FST, promotion of cross-disciplinary collaboration among professionals, and honing of an evaluation design for FST events. The trained teams would then produce FST events that reach children, their parents and the general public. The planning grant project design includes activities necessary to further test, verify and document Fusion Science Theater events. It provides a proof of concept of model effectiveness and transferability. It also initiates, develops and assesses ways to train other groups to implement the model and publicizes the model to national professional networks to spread the work and recruit site teams.
DATE: -
TEAM MEMBERS: Holly Kerby
resource project Public Programs
The California Science Center will develop an exhibition, "Abracadabra: The Science of Illusion." This will be a 6000-sq.ft. traveling exhibit. The theme, the science behind magic, will help visitors understand that magic is based on the complex interplay between sensation, perception, physical science and math concepts, culture, and the art of performance. The goal of the exhibition is to use the public's fascination with magic as a bridge to learning basic science in the area of optics, electromagnetics, simple mechanics, math, physiology and psychology. The exhibit will include seven thematic sections and an enclosed theater for live and taped performances. The exhibition will open at the California Science Center in October, 2000 and then will travel to the six science centers that participate in the Science Museum Exhibit Collaborative. It is estimated about 4 million people will view the exhibition during its national tour.
DATE: -
TEAM MEMBERS: Diane Perlov
resource evaluation Public Programs
Choreographed by Liz Lerman and the Dance Exchange, The Matter of Origins is a contemporary dance exploring historical perspectives and cutting edge physics about our beginnings. In Act One, audience members watch as science concepts are translated into images, music, and dance. Dancers portray ideas such as the complexity of measurement, the ways atomic particles interact, and the origins of the universe. Science-themed, multi-media experiences including images from the Hubble space telescope, CERN, and replications of atomic bomb explosions accompany the dancing. In Act Two, audience members
DATE:
TEAM MEMBERS: Liz Lerman Diane Doberneck John Schweitzer Paula Miller John Borstel