Skip to main content

Community Repository Search Results

resource project Media and Technology
The project team is developing a prototype of a web-based game utilizing the illustrations of chemical elements and science terms created by Simon Basher in his three books, The Periodic Table: Elements with Style!, Chemistry: Getting a Big Reaction!, and Physics: Why Matter Matters! The game will incorporate augmented reality (person-to-person gameplay with the support of the software) to teach grade 4 to 6 students science concepts, including an introduction to chemistry. The game will include curriculum support materials. Pilot research in Phase I will seek to demonstrate that the software prototype functions as planned, teachers are able to integrate it within the classroom environment, and students are engaged with the prototype.
DATE: -
TEAM MEMBERS: Victoria Van Voorhis
resource research Media and Technology
Research chemists from the Center for Enabling New Technologies Through Catalysis (CENTC) worked collaboratively with the Liberty Science Center (LSC) to develop a hands-on activity to educate visitors about how small molecules derived from petroleum feedstocks are used to make larger molecules that are then utilized in the production of everyday consumer goods. Researchers, faculty, and students provided the chemistry content and LSC worked with Blue Telescope Studios to create a user-friendly program for the Ideum Multitouch Table. The resulting “Molecule Magic,” an engaging and intuitive
DATE:
TEAM MEMBERS: Center for Enabling New Technology Through Catalysis (CENTC) Abby O'Connor
resource project Media and Technology
The project will develop and study the impact of science simulations, referred to as sims, on middle school childrens' understanding of science and the scientific process. The project will investigate: 1) how characteristics of simulation design (e.g., interface design, visual representations, dynamic feedback, and the implicit scaffolding within the simulation) influence engagement and learning and how responses to these design features vary across grade-level and diverse populations; 2) how various models of instructional integration of a simulation affect how students interact with the simulation, what they learn, and their preparation for future learning; 3) how these interactions vary across grade-level and diverse populations; and 4) what critical instructional features, particularly in the type and level of scaffolding, are needed. Working with teachers, the team will select 25 existing sims for study. Teachers and students will be interviewed to test for usability, engagement, interpretation, and learning across content areas. The goal will be to identify successful design alternatives and to formulate generalized design guidelines. In parallel, pull-out and classroom-based studies will investigate a variety of use models and their impact on learning. Ten new simulations will then be developed to test these guidelines. Products will include the 35 sims with related support materials available for free from a website; new technologies to collect real-time data on student use of sims; and guidelines for the development of sims for this age population. The team will also publish research on how students learn from sims.
DATE: -
TEAM MEMBERS: Katherine Perkins Daniel Schwartz Michael Dubson Noah Podolefsky