Skip to main content

Community Repository Search Results

resource project Public Programs
Although approximately one-quarter of U.S. students reside in rural communities, rural youth are fifty percent less likely to receive and engage in out-of-school STEM experiences than their urban counterparts. In addition, there has been significantly more investment in understanding and improving informal experiences in urban settings than in rural settings. As a result, there is less known about the characteristics of learning ecosystems and programs that support STEM learning for youth in informal contexts within rural communities. This Research in Service to Practice project aims to address this challenge by exploring the feasibility of a culturally relevant and sustaining STEM program designed specifically for rural youth and their families. Parents and caregivers play a critical role in fostering youths’ interests and persistence in STEM through their own engagement and by connecting them to STEM opportunities and STEM-related fields and career pathways. Through a partnership between the High Desert Museum in Oregon, the Institute for Learning Innovation, Maine Mathematics and Science Alliance, JKS Consulting, and three informal science education institutions, a year-long series of STEM-based workshops and experiences for youth and their families will be co-designed by members of the rural community, informal STEM educators, and STEM professionals and implemented within the rural communities of the participating informal science education institutions—Caddo Mounds State Historic Site Weeping Mary (TX), High Desert Museum (OR), Oregon Coast Aquarium, and The Wild Center (NY). Each series will reflect the cultural knowledge, connections, and resources specific to each rural community. In addition, the informal STEM educators and STEM professionals will receive training on facilitating the culturally sustaining workshops and experiences. Researchers at the Institution for Learning Innovation and the Maine Mathematics and Science Alliance together with the evaluator at JKS Consulting will employ a collaborative design-based research approach to identify and study the STEM learning practices and supports that occur within the program to promote youths’ interests and persistence in STEM. The findings will offer evidence-based insights to the field on how to better engage, reflect, and provide opportunities for diverse rural communities. Ultimately, this research has the potential to advance the current understanding thereby, strengthening rural STEM learning ecosystems and broadening STEM participation among youth in rural communities.

Over a four-year project duration, a collaborative design-based research approach will be employed to address the following research questions: (1) How does culturally sustaining informal STEM programming for families in rural communities contribute to increases in youth STEM persistence? (1a) How might this vary in relation to family and community factors? (2) How does culturally sustaining informal family STEM programming increase community connectivity between STEM-related resources and institutions across informal and formal learning contexts in rural communities leading to a more robust and inclusive STEM learning ecosystem? (2a) To what extent do participating families, informal STEM educators, STEM professionals, and community partners each play a role in increasing this connectivity? The research sample will include 300 families with youth ages 8-11, informal science educators, and STEM professionals across all four sites. Surveys, interviews and observations will be the primary data sources. Analysis of Variance and simple descriptive statistical analysis will be used to analyze the quantitative data. The qualitative data will be analyzed using thematic coding through NVivo. In addition, to complement the research data, JKS Consulting will conduct the formative and summative evaluations of the project to hone effective practices for training informal science learning practitioners in developing and implementing place-based, inquiry-based family learning in rural communities and effective and sustainable practices for engaging rural families in place-based STEM. Findings from the research will be made available and widely distributed in publications, conference presentations, and a multi-part Research to Practice Toolkit designed for parents and caregivers, informal science educators, STEM professionals, and the informal education field at large.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Christina Cid Scott Byrd Deborah Siegel
resource project Media and Technology
This project had three objectives to build knowledge with respect to advancing Informal STEM Education:


Plan, prototype, fabricate, and document a game-linked design-and-play STEM exhibit for multi-generational adult-child interaction utilizing an iterative exhibit design approach based on research and best practices in the field;
Develop and disseminate resources and models for collaborative play-based exhibits to the informal STEM learning community of practice of small and mid-size museums including an interactive, tangible tabletop design-and-play game and a related tablet-based game app for skateboarding science and technology design practice;
Conduct research on linkages between adult-child interactions and game-connected play with models in informal STEM learning environments.


Linked to these objectives were three project goals:


Develop tools to enable children ages 5-8 to collaboratively refine and test their own theories about motion by exploring fundamental science concepts in linked game and physical-object design challenge which integrates science (Newton’s Laws of Motion) with engineering (iterative design and testing), technology (computational models), and mathematics (predictions and comparisons of speed, distance, and height). [Linked to Objectives 1 & 3]
Advance the informal STEM education field’s understanding of design frameworks that integrate game environments and physical exhibit elements using tangibles and playful computational modeling and build upon the “Dimensions of Success” established STEM evaluation models. [Linked to Objectives 1 & 2]
Examine methods to strengthen collaborative learning within diverse families through opportunities to engage in STEM problem-based inquiry and examine how advance training for parents influences the extent of STEM content in conversations and the quality of interactions between caregivers and children in the museum setting. [Linked to Objectives 1 & 3]


The exhibit designed and created as a result of this grant project integrates skateboarding and STEM in an engaging context for youth ages 5 to 8 to learn about Newton’s Laws of Motion and connect traditionally underserved youth from rural and minority areas through comprehensive outreach. The exhibit design process drew upon research in the learning sciences and game design, science inquiry and exhibit design, and child development scholarship on engagement and interaction in adult-child dyads.

Overall, the project "Understanding Physics through Collaborative Design and Play: Integrating Skateboarding with STEM in a Digital and Physical Game-Based Children’s Museum Exhibit" accomplished three primary goals. First, we planned, prototyped, fabricated, and evaluated a game-linked design-and-play STEM gallery presented as a skatepark with related exhibits for adult-child interaction in a Children's Museum.

Second, we engaged in a range of community outreach and engagement activities for children traditionally underserved in Museums. We developed and disseminated resources for children to learn about the physics of the skatepark exhibit without visiting the Museum physically. For example, balance board activities were made portable, the skatepark video game was produced in app and web access formats, and ramps were created from block sets brought to off-site locations.

Third, we conducted a range of research to better understand adult-child interactions in the skatepark exhibit in the Children's Museum and to explore learning of physics concepts during physical and digital play. Our research findings collectively provide a new model for Children's Museum exhibit developers and the informal STEM education community to intentionally design, evaluate, and revise exhibit set-up, materials, and outcomes using a tool called "Dimensions of Success (DOS) for Children's Museum Exhibits." Research also produced a tool for monitoring the movement of children and families in Museum exhibit space, including time on task with exhibits, group constellation, transition time, and time in gallery. Several studies about adult-child interactions during digital STEM and traditional pretend play in the Museum produced findings about social positioning, interaction style, role, and affect during play.
DATE: -
TEAM MEMBERS: Deb Dunkhase Kristen Missall Benjamin DeVane