Skip to main content

Community Repository Search Results

resource evaluation Informal/Formal Connections
This summary brief captures highlights from the second year of the NSF-funded WaterMarks project. The technical evaluation report for this same project period can be found on the main project page. The purpose of this document is to communicate key updates (as observed by the evaluation team) in a less technical way with the many different audiences who have an interest in keeping up with WaterMarks.
DATE:
TEAM MEMBERS: Donnelley (Dolly) Hayde Laura Weiss Justin Reeves Meyer
resource evaluation Informal/Formal Connections
This is the evaluation report for the second year of the NSF-funded WaterMarks project. It reflects a current summary of available evidence about the intended outcomes of program activities to date, as well as commentary on how the project is using (or could use) this information moving forward.
DATE:
TEAM MEMBERS: Donnelley (Dolly) Hayde Laura Weiss Justin Reeves Meyer
resource evaluation Informal/Formal Connections
This summary brief captures highlights from the evaluation report for the first year of the NSF-funded WaterMarks project (also available on this page). The purpose of this document is to communicate key updates from evaluation in a less technical way with the many different audiences who have an interest in keeping up with WaterMarks.
DATE:
TEAM MEMBERS: Donnelley (Dolly) Hayde Laura Weiss Justin Reeves Meyer
resource evaluation Informal/Formal Connections
This is the evaluation report for the first year of the NSF-funded WaterMarks project. It reflects an initial summary of available evidence about the intended outcomes of program activities to date, as well as commentary on how the project is using (or could use) this information moving forward. This report contains descriptions of embedded measures (i.e. anonymized drawings and reflections captured on a thematic postcard) included in community walks and analyses of secondary data (i.e., interviews conducted by other members of hte project team), as well as reflections emerging from the
DATE:
TEAM MEMBERS: Donnelley (Dolly) Hayde Laura Weiss Justin Reeves Meyer
resource research Public Programs
In April 2018, FHI 360, under the leadership of Maryann Stimmer and Merle Froschl, convened a meeting of thought leaders in Washington, D.C. to capture a “snapshot” of STEM education. They subsequently conducted additional interviews with more than 50 local and national policy leaders; public and private funders; researchers; PreK-12 and post-secondary educators; parents, and leaders of afterschool programs, science centers and youth-serving organizations. The purpose of this summary report is to identify current trends and gaps to inform research, policy, and practice in order to reinforce
DATE:
TEAM MEMBERS: Maryann Stimmer Merle Froschl
resource research Public Programs
This poster explores three programs that engage underrepresented youth in physics learning through dance.
DATE:
TEAM MEMBERS: Folshade Cromwell Solomon Tracey Wright Lawrence Pratt Vandana Singh Mariah Steele Robin Thompson Dionne Champion Christina Bebe
resource research Public Programs
Educational approaches that provide meaningful, relevant opportunities for place-based learning have been shown to be effective models for engaging indigenous students in science. The Laulima A ‘Ike Pono (LAIP) collaboration was developed to create a place-based inclusive learning environment for engaging local community members, especially Native Hawaiians and Pacific Islanders, in scientific research at a historically significant ancient Hawaiian fishpond. The LAIP internship focused on problem-solving activities that were culturally relevant to provide a holistic STEM research experience
DATE:
TEAM MEMBERS: Judith D. Lemus
resource project Public Programs
A collaboration of TERC, MIT, The Woods Hole Oceanographic Institution and community-based dance centers in Boston, this exploratory project seeks to address two main issues in informal science learning: 1) broadening participation in science by exploring how to expand science access to African-American and Latino youth and 2) augmenting science learning in informal contexts, specifically learning physics in community-based dance sites. Building on the growing field of "embodied learning," the project is an outgrowth in part of activities over the past decade at TERC and MIT that have investigated approaches to linking science, human movement and dance. Research in embodied learning investigates how the whole body, not just the brain, contributes to learning. Such research is exploring the potential impacts on learning in school settings and, in this case, in out of school environments. This project is comprised of two parts, the first being an exploration of how African-American and Latino high school students experience learning in the context of robust informal arts-based learning environments such as community dance studios. In the second phase, the collaborative team will then identify and pilot an intervention that includes principles for embodied learning of science, specifically in physics. This phase will begin with MIT undergraduate and graduate students developing the course before transitioning to the community dance studios. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The goal of this pilot feasibility study is to build resources for science learning environments in which African-American and Latino students can develop identities as people who practice and are engaged in scientific inquiry. Youth will work with choreographers, physicists and educators to embody carefully selected physics topics. The guiding hypothesis is that authentic inquiries into scientific topics and methods through embodied learning approaches can provide rich opportunities for African-American and Latino high school-aged youth to learn key ideas in physics and to strengthen confidence in their ability to become scientists. A design- based research approach will be used, with data being derived from surveys, interviews, observational field notes, video documentation, a case study, and physical artifacts produced by participants. The study will provide the groundwork for producing a set of potential design principles for future projects relating to informal learning contexts, art and science education with African American and Latino youth.
DATE: -
TEAM MEMBERS: Folashade Cromwell Solomon Tracey Wright Lawrence Pratt
resource research Public Programs
Learn how to create opportunities for young people from low-income, ethnically diverse communities to learn about growing food, doing science, and how science can help them contribute to their community in positive ways. The authors developed a program that integrates hydroponics (a method of growing plants indoors without soil) into both in-school and out-of-school educational settings.
DATE:
TEAM MEMBERS: Amie Patchen Andrea Aeschlimann Anne Vera-Cruz Anushree Kamath Deborah Jose Jackie DeLisi Michael Barnett Paul Madden Rajeev Rupani
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project's goal is to demonstrate an educational model fully commensurate with the demands of the 21st Century workforce, and more specifically, with the emerging “green-tech” economy.
DATE:
TEAM MEMBERS: Tamara Ball
resource evaluation Public Programs
The data collection for this project involves three audiences: (1) a post-event survey completed by participants at the 'Eight-Legged Encounters' event, (2) a club experience survey completed by middle school students in an after school club, and (3) focus groups, observations, and end-of-course evaluations conducted with students in the BIOS 497/897 'Communicating Science through Outreach' seminar class at the University of Nebraska-Lincoln. Data was collected from February to April, 2013 and the evaluation was conducted by the Bureau of Sociological Research (BOSR). Appendix contains surveys
DATE:
TEAM MEMBERS: University of Nebraska-Lincoln Eileen Hebets
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell