Skip to main content

Community Repository Search Results

resource research Public Programs
This poster was presented at the 2021 NSF AISL Awardee Meeting. Free-choice learning occurs when individuals make choices about what, where, how, and who they participate with in their self-motivated learning activities. This project explores how different people, living in the same geographic region, make plants and gardening a part of their lives. We explore how adult community members choose to participate in their plant and gardening interests, including: the topics and activities that interest them, with whom they participate, where, and which resources they access. This work will
DATE:
TEAM MEMBERS: Elysa Corin Judy Koke David Meier Allison Hu Eric Jones
resource research Public Programs
This is a poster summarizing our AISL project: PES@LTERs.
DATE:
TEAM MEMBERS: Sarah Garlick John Besley Kathy Fallon Lambert Marissa Weiss Peter Groffman Pamela Templer
resource research Public Programs
This is a poster presentation of the ECO Framework shared during the 2021 SciPEP conference.
DATE:
TEAM MEMBERS: Sarah Garlick Kathy Fallon Lambert
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource project Public Programs
The U.S. Fish and Wildlife Service estimates that over 41 million people connect to nature through birding. Learning about birds in their natural environments offers opportunities for informal engagement in STEM by a broad range of individuals and groups. Birders often engage in scientific data gathering and analyses, geolocation and remote sensing, and phenology. They also become aware of ecological changes in bird habitats and migratory patterns due to rising temperatures and climate-related events like sea level rise, droughts, fires, and extreme weather. As such, the birding community is an ideal network to better understand and communicate the impacts of climatological changes on bird populations to the public. With this Innovations in Development project, the National Audubon Society will develop a new avian-focused, conservation and climate science community science curriculum for its Nature Centers, and test the effectiveness of the curriculum in educating the public about avian-focused conservation and climatological changes through guided nature experiences. Birding can serve as a pivotal entrée for young people into STEM fields and careers. Through its programs and partnerships, Audubon will leverage its national network to ensure that through this project a more diverse group of voices, particularly young adults and young adults of color, become involved in asking critical questions and developing solutions to address important environmental issues of the future. If successful, the broader impacts of this project on capacity building and public engagement could be far-reaching and long-lasting.

Over the three-year project duration, Audubon will bring educators from its nationwide network of thirty-four Nature Centers (including urban, suburban, and rural sites), together with over 510 young adults (ages 18-25) from its network of college campus chapters. An evidence-based curriculum and community science activities will be created and tested, relying heavily on a team of experts in ornithology, climate science research, STEM curriculum design, diversity, and informal science education. College students will advise on the design of content and activities to effectively interest and engage young adults. These students will be recruited from the new Audubon Campus Chapters Program, which includes 111 college and university campuses, among them, 19 Historically Black Colleges and Universities (HBCUs) and other Minority Serving Institutions (MSIs). The target population will be surveyed to also understand their current and likely participation in guided nature experiences and knowledge base in climate science. Current best practices in guided nature experiences will be gathered from across the Audubon network. The implementation efforts will result in a national STEM model, with train-the-trainer guides and workshops for informal science educators and public engagement opportunities focused on improving the state and condition of avian habitats and communities through climate science research. An external evaluation will be conducted and will include data collection methods such as retrospective pre and post surveys, semi-structured interviews, focus groups, and an embedded assessment to determine impact. The findings will be used to iteratively refine the evidence-based curriculum and measure STEM learning outcomes for the guided nature experience participants. The evaluation will address four areas: (1) fidelity of program implementation to promote accountability; (2) formative evaluation to understand needs and interests of young adults (ages 18-25), and subsequently inform program design; (3) outcomes for Center educators, to inform iterative improvement; and (4) outcomes for program participants, to contribute to the growing knowledge base on effective practices for STEM learning in informal settings.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Loren Smith Mark Scallion Heather Starck
resource project Public Programs
Free-choice and interest-driven learning activities are a highly significant source of STEM (science, technology, engineering, and mathematics) learning for adults through their lifespans. Gardening is one such activity that is widespread across communities with one in every fifty American adults reporting an interest in gardening/plants and who associate that interest/hobby with science. While the terms interest and hobby are related, the latter refers to something one actively does, not just thinks about doing. Adults who seek out learning and participation opportunities in highly visible community spaces (e.g., gardening clubs, science centers, botanical gardens) are likely to be White and well-educated. Further understanding is needed of when and how community members from other demographic groups access different resources (people, organizations, and places) for information and opportunities, and what influences them to do so. This Pilot and Feasibility Study will explore informal learning networks in Alameda County, California, specifically around gardeners and gardening. Researchers will use surveys, focus groups, and program observations to gather data on how those who pursue self-directed scientific learning about gardening access information. Of interest is how the differential access to and pursuit of information occurs among diverse community members, especially those outside of more established Master Gardener and other organized gardening programs. This research will: 1) contribute to understanding of the resources that interest-driven adult STEM learners access, describing the barriers they perceive and how/if the accessed resources differ by gender, race, or socioeconomics; 2) determine the feasibility of a sampling approach to gather data from individuals in demographic groups who may not have been reached in prior research efforts; and 3) generate insights for informal science education practitioners and researchers about how to better support diverse interest-driven STEM learners. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

It is hypothesized that there is a large percentage of individuals from non-dominant populations engaged in free-choice STEM learning; past efforts have likely under-counted the participation of individuals from these communities. To achieve the research aims the research team will utilize respondent-driven sampling, engaging gardening hobbyists' social contacts to recruit participants, and collect data from diverse (gender, race, socioeconomics) urban gardeners who may be differently connected to STEM learning ecosystem resources/organizations than their highly visible peers. This approach will be used to investigate the behaviors, perceptions, and outcomes related to STEM learning such as development of self-efficacy and science identity. Focus groups will provide context for themes that arise in the survey data and clarify hobbyists' participation preferences and experiences. In situ observations of learning environments comprise the third mechanism for collecting data. All three data sources will support triangulation of results and contribute to the findings. Key outcomes of this project will be to determine if the target population has been reached through the sampling approach, to identify methodological guidelines for sampling with an intent to reach those from populations under-represented in STEM-related free-choice activities, and to clarify which network variables are most useful to study. This research lays the foundation for future work. It is anticipated that the approach developed and tested in this research may be adapted by others in the future and will have the potential to serve as a model for community-based organizations and researchers interested in studying the learning ecosystems of previously hidden populations of participants, including how these individuals perceive and access resources to support their STEM learning.

This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Elysa Corin