Skip to main content

Community Repository Search Results

resource evaluation Informal/Formal Connections
This summary brief captures highlights from the evaluation report for the first year of the NSF-funded WaterMarks project (also available on this page). The purpose of this document is to communicate key updates from evaluation in a less technical way with the many different audiences who have an interest in keeping up with WaterMarks.
DATE:
TEAM MEMBERS: Donnelley (Dolly) Hayde Laura Weiss Justin Reeves Meyer
resource evaluation Informal/Formal Connections
This is the evaluation report for the first year of the NSF-funded WaterMarks project. It reflects an initial summary of available evidence about the intended outcomes of program activities to date, as well as commentary on how the project is using (or could use) this information moving forward. This report contains descriptions of embedded measures (i.e. anonymized drawings and reflections captured on a thematic postcard) included in community walks and analyses of secondary data (i.e., interviews conducted by other members of hte project team), as well as reflections emerging from the
DATE:
TEAM MEMBERS: Donnelley (Dolly) Hayde Laura Weiss Justin Reeves Meyer
resource project Public Programs
For some rural communities, the outdoor recreation ecosystem is an integral part of the STEM learning ecosystem that connects rural youth with STEM and STEM career pathways. Landowners and forest managers construct and fly drones to inventory, map, and monitor resources. Hatcheries monitor fish levels and sustain populations for recreational fisheries. Backcountry skiers depend on snow science and avalanche forecasts to assess conditions. Outdoor recreation that youth in rural communities are currently engaging in can be sources of opportunities and experiences for cultivating their STEM identities and career aspirations. Existing studies have shown the promise of specific, one-time interventions and discrete activities, none have situated activities in a broader ecosystem framework comprising a nascent and growing economic sector that is currently shaping rural communities.

This Pilot and Feasibility project brings together CAST, a non-profit education research organization, the University of New Hampshire (UNH), and outdoor-recreation and informal STEM community-based youth-serving organizations in New Hampshire (NH). In particular, this study will investigate the contributions of youth's participation in (or aversion of) outdoor recreation on developing high school aged students' STEM identities and considerations of careers in STEM through outdoor recreation. Researchers seek to address three questions: How can outdoor recreation be used as an informal STEM learning context to broaden participation for underrepresented rural youth who face known barriers to the traditional learning experiences necessary for developing positive STEM identities? How can outdoor recreation be used to increase the STEM career pathways for underrepresented rural youth? How do people in different positions in the STEM ecosystem view STEM as part of the future OR economy? In this qualitative dominant research study, investigators will employ experience sampling to involve 30 youth and 10 adults in rural communities in collecting their moments of engaging in outdoor recreation, and photovoice to encourage them to examine and reflect on these moments. Another group of 20 youth and 30 adults from the community will be interviewed to consider how members of the community perceives viability of outdoor recreation as a part of future STEM career pathways.
DATE: -
TEAM MEMBERS: Amanda Bastoni Sam Catherine Johnston Andrew Coppens Jayson Seaman
resource project Media and Technology
Few people realize that the largest part of our planet’s biosphere remains virtually unexplored and unknown. This enormous habitat, accounting for an area of 116 million square miles or the equivalent size of roughly 30 times the area of the United States, is the abyssal zone of the deep ocean. The abyssal sea floor, at about 6000 ft., contains more than four times as much habitat for animal life as all of the dry mountains, forests, deserts, plains and jungles combined. Microscopic larvae in the deep ocean, are essential for the renewal and replenishment of life and they repopulate areas damaged by human activities such as mining and trawling, and they make marine protected areas both feasible and important. The National Science Foundation has funded intensive studies of oceanography related to larval recruitment for decades. However, findings from this large NSF investment of personnel, technology and funding have never been widely presented to the public. This project proposes to remedy this by developing a 40 minute giant screen film to be shown in science centers across the country, supported by virtual reality and augmented reality learning tools. The film will cover select deep ocean science expeditions using the deep-sea vehicles Alvin and ROV Jason. Content will include elements of the research process, activities related to the design and operation of deep-sea vehicles as well as interviews with scientists and technologists. The companion activities, Deep-Ocean Pilot (a VR-360° viewing station) and Plankton Quest (an AR biology treasure hunt) will extend the audience experience of the deep ocean out of the giant screen theater and into the surrounding museum environment. The website and social media will extend awareness and resources into homes. The project will be appropriate for a broad general audience, with particular appeal for the target audience of women and girls (ages 7-20). The larval biologist team is led by the PI at the University of Oregon, in collaboration with scientists from North Carolina State University, Western Washington University and the University of Rhode Island. Several young women scientists will be featured in the film providing role models. The production company, Stephen Low Productions, Inc. will use the latest technology on the Alvin and other cinematic tools to capture the visual images in the abyss. Collaborating museums will participate in the development and implementation of the Virtual and Augmented Reality learning tools as well as showing the film in their theaters.

Broader impact project goals include 1) Advancing public awareness of the abyssal ocean, the role of microscopic larvae, and what scientists are learning from expeditions that use deep submergence technologies; 2) Introducing public audiences and young women specifically to the wide range of STEM-related occupations encompassed in the field of ocean exploration and research; and 3) Advancing STEM learning research and practice in the area of immersive media in conveying STEM concepts and enhancing audience identification with STEM. Oregon State University’s STEM Research Center will build new knowledge by conducting formative and summative evaluation of the film and its associated support products (e.g., Virtual and augmented reality activities, website resources), addressing the following evaluation questions: 1)What do audiences take away from their experience in terms of fascination/interest, awareness and understanding related to ocean science exploration? 2) To what degree does the film alone or in combination with supplemental experiences trigger career awareness in girls and young women, and youth of racial/ethnic backgrounds? 3) To what degree do immersive experiences (a sense of “being there”) contribute to learning from the film? 4) How enduring are outcomes with audiences past the onsite immediate experience? Formative evaluation will be designed as ongoing improvement informed by empirical evidence in which evaluators work with team members to answer decision-relevant questions in a timely and project-focused way. The summative evaluation will be structured as an effectiveness study using mixed methods and ascertaining whether key programmatic outcomes have been reached and the degree to which particular program elements will have contributed to the results.
DATE: -
TEAM MEMBERS: Craig Young Alexander Low Stephen Low George von Dassow Trish Mace
resource research Public Programs
Environmental educators have used guided-inquiry in natural and supportive learning environments for decades, but comparatively little programming and research has focused on experiences in urban environments, including in constructed ecosystems like green roofs, or impacts on older youth and adults. To address this gap, we designed a tiered, near-peer research mentoring program called Project TRUE (Teens Researching Urban Ecology) and used a mixed-methods approach to evaluate impacts on undergraduates serving as research mentors. During the 11-week program, undergraduates conducted
DATE:
TEAM MEMBERS: Jason Aloisio Su-Jen Roberts Rachel Becker-Klein Sarah Dunifon JD Lewis J. Alan Clark Jason Munshi-South Karen Tingley
resource project Public Programs
Milwaukee has established itself as a leader in water management and technology, hosting a widely recognized cluster of industrial, governmental, nonprofit, and academic activity focused on freshwater. At the same time, Milwaukee faces a wide range of challenges with freshwater, some unique to the region and others common to cities throughout the country. These challenges include vulnerability to flooding and combined sewer overflows after heavy rainfall, biological and pharmaceutical contamination in surface water, lead in drinking water infrastructure, and inequity in access to beaches and other recreational water amenities. Like other cities, Milwaukee grapples with the challenges global climate change imposes on urban water systems, including changing patterns of precipitation and drought.

These problems are further complicated by Milwaukee's acute racial and economic residential segregation. With a population of approximately 595,000, embedded within a metropolitan area of over 1.5 million, Milwaukee remains one of the country's most segregated cities. There is increasing urgency to engage the public--and especially those who are most vulnerable to environmental impacts--more deeply in the stewardship of urban water and in the task of creating sustainable urban futures. The primary goal of this four-year project is to foster community-engaged learning and environmental stewardship by developing a framework that integrates art with Science, Technology, Engineering, and Mathematics (STEM) experiences along with geography, water management, and social science. Synergies between STEM learning and the arts suggest that collaborations among artists, scientists, and communities can open ways to bring informal learning about the science of sustainability to communities.

WaterMarks provides an artist generated conceptual framework developed by Mary Miss / City as Living Laboratory (CALL) to help people better understand their relationship to the water systems and infrastructure that support their lives. Project activities include artist/scientist/community member-led Walks, which are designed to engage intergenerational participants both from the neighborhoods and from across the city, in considering the conditions, characteristics, histories, and ecosystems of neighborhoods. Walks are expanded upon in Workshops with residents, local scientists/experts, and other stakeholders, and include exploring current water-related environmental challenges and proposing solutions. The Workshops draw on diverse perspectives, including lived experience, scientific knowledge, and policy expertise. Art projects created by local artists amplify community engagement with the topics, including programming for teens and young adults. Free Wi-Fi will be integrated into various Marker sites around the city providing access to online, self-guided learning opportunities exploring the water systems and issues facing surrounding neighborhoods. Current programming focuses primarily on Milwaukee's predominantly African American near North Side and the predominantly Latinx/Hispanic near South Side. Many neighborhoods in these sections are vulnerable to such problems as frequent flooding, lead contamination in drinking water, inequities in safety and maintenance of green space, and less access to Lake Michigan, the city's primary natural resource and recreational amenity.

The WaterMarks project advances informal STEM learning in at least two ways. First, while the WaterMarks project is designed to fit Milwaukee, the project includes the development of an Adaptable Model Guide. The Guide is designed so that other cities can modify and employ its inclusive structure, programming, and process of collaboration among artists, scientists, partner organizations, and residents to promote citywide civic engagement in urban sustainability through the combination of informal STEM learning and public art. The Guide will be developed by a Community-University Working Group (CULab) hosted by UW-Milwaukee's Center for Community-Based Learning, Leadership, and Research and made up of diverse community and campus-wide stakeholders. In addition to overseeing the Guide’s creation, CULab will conceptualize onboarding and mentorship strategies for new participants as well as a framework for the program’s expansion and sustainability.

Second, through evaluation and research, the project will build a theoretical model for the relationships among science learning, engagement with the arts, and the distinctive contexts of different neighborhoods within an urban social-ecological system. The evaluation team, COSI’s Center for Research and Evaluation, and led by Co-PI Donnelly Hayde, aims to conduct formative, summative, and process evaluation of the Watermarks project, with the additional goal of producing evaluative research findings that can contribute to the broader field of informal learning. Evaluation foci include: How does the implementation of WaterMarks support positive outcomes for the project’s communities and the development of an adaptable model for city-scale informal science learning about urban environments? 2. To what extent do the type and degree of outcome-related change experienced by participating community residents vary across and/or between project sites? What factors, if any, appear to be linked to these changes? 3. To what extent and in what ways do the activities of the WaterMarks projects appear to have in situ effects related to the experience of place at project sites?

The project’s research team led by PI Ryan Holifield and Co-PI Woonsup Choi, will investigate how visual artistic activities introduced by the programming team as part of the Walks (and potentially other engagement activities) interact with personal, sociocultural, and physical contexts to produce distinctive experiences and outcomes of informal science learning about urban water systems. The aim of the research will be to synthesize the results from the different WaterMarks sites into an analysis generalizable beyond specific neighborhoods and applicable to other cities. The project's research questions include: 1. How does participation in Walks focused on visual artistic activities affect outcomes and experiences of informal STEM learning about urban water systems? 2. How do outcomes and experiences of informal STEM learning vary across different urban water topics, participants from different demographic groups, and contrasting sociocultural and biophysical contexts?

This Innovations in Development project is led by the University of Wisconsin-Milwaukee (UWM), in collaboration with City as Living Laboratory (CALL) and the COSI Center for Research and Evaluation.
DATE: -
resource project Public Programs
The U.S. Fish and Wildlife Service estimates that over 41 million people connect to nature through birding. Learning about birds in their natural environments offers opportunities for informal engagement in STEM by a broad range of individuals and groups. Birders often engage in scientific data gathering and analyses, geolocation and remote sensing, and phenology. They also become aware of ecological changes in bird habitats and migratory patterns due to rising temperatures and climate-related events like sea level rise, droughts, fires, and extreme weather. As such, the birding community is an ideal network to better understand and communicate the impacts of climatological changes on bird populations to the public. With this Innovations in Development project, the National Audubon Society will develop a new avian-focused, conservation and climate science community science curriculum for its Nature Centers, and test the effectiveness of the curriculum in educating the public about avian-focused conservation and climatological changes through guided nature experiences. Birding can serve as a pivotal entrée for young people into STEM fields and careers. Through its programs and partnerships, Audubon will leverage its national network to ensure that through this project a more diverse group of voices, particularly young adults and young adults of color, become involved in asking critical questions and developing solutions to address important environmental issues of the future. If successful, the broader impacts of this project on capacity building and public engagement could be far-reaching and long-lasting.

Over the three-year project duration, Audubon will bring educators from its nationwide network of thirty-four Nature Centers (including urban, suburban, and rural sites), together with over 510 young adults (ages 18-25) from its network of college campus chapters. An evidence-based curriculum and community science activities will be created and tested, relying heavily on a team of experts in ornithology, climate science research, STEM curriculum design, diversity, and informal science education. College students will advise on the design of content and activities to effectively interest and engage young adults. These students will be recruited from the new Audubon Campus Chapters Program, which includes 111 college and university campuses, among them, 19 Historically Black Colleges and Universities (HBCUs) and other Minority Serving Institutions (MSIs). The target population will be surveyed to also understand their current and likely participation in guided nature experiences and knowledge base in climate science. Current best practices in guided nature experiences will be gathered from across the Audubon network. The implementation efforts will result in a national STEM model, with train-the-trainer guides and workshops for informal science educators and public engagement opportunities focused on improving the state and condition of avian habitats and communities through climate science research. An external evaluation will be conducted and will include data collection methods such as retrospective pre and post surveys, semi-structured interviews, focus groups, and an embedded assessment to determine impact. The findings will be used to iteratively refine the evidence-based curriculum and measure STEM learning outcomes for the guided nature experience participants. The evaluation will address four areas: (1) fidelity of program implementation to promote accountability; (2) formative evaluation to understand needs and interests of young adults (ages 18-25), and subsequently inform program design; (3) outcomes for Center educators, to inform iterative improvement; and (4) outcomes for program participants, to contribute to the growing knowledge base on effective practices for STEM learning in informal settings.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Loren Smith Mark Scallion Heather Starck
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This two-year Pilots and Feasibility project seeks to build knowledge and strategic impact in the informal STEM learning field by studying how and why science-education-art collaborations yield impactful informal STEM learning experiences. By design and implementing interactive and participatory experiences for adult audiences, this project will build knowledge about how to help communities learn about environmental science and apply scientific knowledge to environmental decision-making in their lives.

The project's two overarching research questions are: (1) What are the essential elements of collaboration among scientists, educators, and artists that support learning about adaptation in a changing environment? (2) In what ways do designed, participatory, informal science learning experiences support participant learning? This pilot project will: a) develop methods for facilitating and assessing collaboration among scientists, educators, and artists; b) pilot and refine approaches for engaging scientists, educators, and artists with community members for high quality participatory experiences focus on learning about adaptation to environmental change in informal learning settings; c) pilot and refine methods to measure the outcomes for community participants on knowledge about environmental change and its application to problems in their everyday lives. This project is innovative in bridging a diverse body of scholarship in order to study the process of collaboration and the specific ways interdisciplinary collaborations foster learning. Because informal STEM learning settings often combine the work of multiple disciplines, examining the process and outcomes of collaborative, participatory STEM learning has the potential to deliver widely applicable guidance for achieving more impactful educational outcomes.

The proposed project will broaden participation by engaging adult members of environmentally vulnerable communities in participatory STEM activities and will improving individual and community well-being by delivering tools for future decision-making. The collaborative project will build valuable partnerships and capacity between disparate sectors of society, allowing co-learning and co-production of knowledge. Results will be published in scholarly journals as well as shared with community participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Amy Lesen Sameer Honwad Ama Rogan Calvin Mackie
resource project Public Programs
Free-choice and interest-driven learning activities are a highly significant source of STEM (science, technology, engineering, and mathematics) learning for adults through their lifespans. Gardening is one such activity that is widespread across communities with one in every fifty American adults reporting an interest in gardening/plants and who associate that interest/hobby with science. While the terms interest and hobby are related, the latter refers to something one actively does, not just thinks about doing. Adults who seek out learning and participation opportunities in highly visible community spaces (e.g., gardening clubs, science centers, botanical gardens) are likely to be White and well-educated. Further understanding is needed of when and how community members from other demographic groups access different resources (people, organizations, and places) for information and opportunities, and what influences them to do so. This Pilot and Feasibility Study will explore informal learning networks in Alameda County, California, specifically around gardeners and gardening. Researchers will use surveys, focus groups, and program observations to gather data on how those who pursue self-directed scientific learning about gardening access information. Of interest is how the differential access to and pursuit of information occurs among diverse community members, especially those outside of more established Master Gardener and other organized gardening programs. This research will: 1) contribute to understanding of the resources that interest-driven adult STEM learners access, describing the barriers they perceive and how/if the accessed resources differ by gender, race, or socioeconomics; 2) determine the feasibility of a sampling approach to gather data from individuals in demographic groups who may not have been reached in prior research efforts; and 3) generate insights for informal science education practitioners and researchers about how to better support diverse interest-driven STEM learners. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

It is hypothesized that there is a large percentage of individuals from non-dominant populations engaged in free-choice STEM learning; past efforts have likely under-counted the participation of individuals from these communities. To achieve the research aims the research team will utilize respondent-driven sampling, engaging gardening hobbyists' social contacts to recruit participants, and collect data from diverse (gender, race, socioeconomics) urban gardeners who may be differently connected to STEM learning ecosystem resources/organizations than their highly visible peers. This approach will be used to investigate the behaviors, perceptions, and outcomes related to STEM learning such as development of self-efficacy and science identity. Focus groups will provide context for themes that arise in the survey data and clarify hobbyists' participation preferences and experiences. In situ observations of learning environments comprise the third mechanism for collecting data. All three data sources will support triangulation of results and contribute to the findings. Key outcomes of this project will be to determine if the target population has been reached through the sampling approach, to identify methodological guidelines for sampling with an intent to reach those from populations under-represented in STEM-related free-choice activities, and to clarify which network variables are most useful to study. This research lays the foundation for future work. It is anticipated that the approach developed and tested in this research may be adapted by others in the future and will have the potential to serve as a model for community-based organizations and researchers interested in studying the learning ecosystems of previously hidden populations of participants, including how these individuals perceive and access resources to support their STEM learning.

This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Elysa Corin
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project aims to understand ways to empower Latinx families (adult caregivers) to feel confident in their ability to support their middle school-aged girls in science and engineering activities. The project involves seven weeks of family programming around rockets or urban farming, as well as separate conversation groups for adult family members and girls. The project is relevant for several reasons: females and Latinx individuals are both underrepresented in science, technology, engineering, and math (STEM) coursework and careers; girls tend to lose interest in STEM by middle school age; and adult family members may have an impact on their children's attitudes and interests. The project partners with school districts and nonprofit organizations in Arizona and California.

This multidisciplinary project's priority is broadening participation, with a focus on increasing Latina girls' science and engineering interests through Family Project-Based Learning Activities, Conversation Groups, and a cultivated Community of Learners. It is based on the frameworks of Social Cognitive Career Theory and Community Cultural Wealth. The project aims to empower families (adult caregivers) to feel confident in their ability to support their daughters in science and engineering activities, which is often low especially among Latinx parents. The project will develop and evaluate two out-of-school enrichment methods for aiding families in encouraging and supporting their daughters in science: Family Problem-Based Learning Activities, which focus on rockets and urban farming, and Conversation Groups, which provide information and discussion for separate groups of parents and girls. A series of pilot studies will be conducted with 80 families to iteratively evaluate and improve the materials and procedure prior to the main study with 180 families, featuring a factorial design with a control group.

The materials developed and research findings may inform similar projects, especially those for students from culturally and linguistically diverse backgrounds and projects seeking to enhance the role of families in learning. The hypothesis guiding the project is that the greatest gains will be produced with the synergistic combination of enrichment methods. Another component that can potentially have broad impact is working to create environments where Community Cultural Wealth is recognized and enhanced through interactions of different families, creating Communities of Learners. This can inform projects that recognize the importance of community and/or that seek to use culture as an asset. The proposed study will engage three geographically distributed universities and several community partners. It will also provide university students and community leaders opportunities for work on instructional design, implementation, and research. The team will disseminate their findings and methods through multiple avenues to reach researchers, parents, leaders, curators, and educators in informal and K-12 settings.

This Research in Service to Practice award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Katherine Short-Meyerson Peter Rillero Peter Meyerson Margarita Jimenez-Silva Christopher Edwards
resource project Public Programs
American Indian and Alaska Native communities continue to disproportionately face significant environmental challenges and concerns as a predominately place-based people whose health, culture, community, and livelihood are often directly linked to the state of their local environment. With increasing threats to Native lands and traditions, there is an urgent need to promote ecological sustainability awareness and opportunities among all stakeholders within and beyond the impacted areas. This is especially true among the dozens of tribes and over 50,000 members of the Coast Salish Nations in the Pacific Northwest United States. The youth within these communities are particularly vulnerable. This Innovations in Development project endeavors to address this serious concern by implementing a multidimensional, multigenerational model aimed at intersecting traditional ecological knowledge with contemporary knowledge to promote: (a) environmental sustainability awareness, (b) increased STEM knowledge and skills across various scientific domains, and (c) STEM fields and workforce opportunities within Coast Salish communities. Building on results from a prior pilot study, the project will be grounded on eight guiding principles. These principles will be reflected in all aspects of the project including an innovative, culturally responsive toolkit, curriculum, museum exhibit and programming, workshops, and a newly established community of practice. If successful, this project could provide new insights on effective mechanisms for not only promoting STEM knowledge and skills within informal contexts among Coast Salish communities but also awareness and social change around issues of environmental sustainability in the Pacific Northwest.

Over a five-year period, the project will build upon an extant curriculum and findings codified in a pilot study. Each aspect of the pilot work will be refined to ensure that the model established in this Innovations and Development project is coherent, comprehensive, and replicable. Workshops and internships will prepare up to 200 Coast Salish Nation informal community educators to implement the model within their communities. Over 2,500 Coast Salish Nation and Swinomish youth, adults, educators, and elders are expected to be directly impacted by the workshops, internships, curriculum and online toolkit. Another 300 learners of diverse ages are expected to benefit from portable teaching collections developed by the project. Through a partnership with the Washington State Burke Natural History Museum, an exhibit and museum programming based on the model will be developed and accessible in the Museum, potentially reaching another 35,000 people each year. The project evaluation will assess the extent to which the following expected outcomes are achieved: (a) increased awareness and understanding of Indigenous environmental sustainability challenges; (b) increased skills in developing and implementing education programs through an Indigenous lens; (c) increased interest in and awareness of the environmental sciences and other STEM disciplines and fields; and (d) sustainable relationships among the Coast Salish Nations. A process evaluation will be conducted to formatively monitor and assess the work. A cross cultural team, including a recognized Coast Salish Indigenous evaluator, will lead the summative evaluation. The project team is experienced and led by representatives from the Swinomish Indian Tribal Community, Oregon State University, Garden Raised Bounty, the Center for Lifelong STEM Learning, the Urban Indian Research Institute, Feed Seven Generations, and the Burke Museum of Natural History and Culture.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Jamie Donatuto Diana Rohlman Elise Krohn Valerie Segrest Rosalina James
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This Research in Service to Practice project examines how informal place-based collaborative learning can support local communities' planning processes related to current environmental changes. As a part of this study workshops will be conducted in 8 communities that have a range of planning mandates based on recent extreme environmental changes such as drought/wildfires, flooding, invasive species, or loss of native wildlife. Place-based adaptation workshops will be designed to be locally relevant and empower people to learn and act on their newly acquired understandings. Local community collective actions may include a range of decisions (e.g., infrastructure changes such as building defenses against sea level rise in coastal communities or improving the quality of roads to withstand higher temperatures.) Collective action may also lead to community wide behavioral changes such as individuals using less water or farmers planting different crops. The study will focus on the efficacy of the methods used in 8 workshops in communities throughout the country. Research objectives include: 1) identifying experts' belief about the most critical components of successful workshops; 2) Understanding of prior workshop outcomes and 3) test hypothesized effective practices and understand how learning takes place and collective action does or does not take place. The project addresses key AISL solicitation priorities including strategic impact on the field of informal STEM learning, advancing collaboration, and building professional capacity. It engages both public and professional audiences as described in the solicitation. Public audiences include stakeholders in each of the 8 communities such as community environmental groups, NGOs, businesses, landowners, and local government planners. Professional audiences include the workshop scientists and facilitators who will be trained in the experimental workshop approach. The project builds upon and expands the existing AISL portfolio of science communication projects such as science cafes, science festivals, science media, and library based projects. This is a collaborative project of EcoAdapt and Virginia Tech with participants from the National Parks Conservation Association, the Desert Research Institute, and the Wildlife Conservation Society and others. The research will progress through two phases. Phase 1 is designed to identify consensus-based effective practices for promoting learning and action in adaptation workshops. It includes a Delphi study to synthesize beliefs about effective practices held by experienced workshop facilitators across the United States. Phase 2 includes iterative design and research of eight adaptation workshops in various communities with a range of planning mandates and recent extreme weather experience. By iteratively revising the workshop design, the study will elucidate how different workshop components influence participant learning, individual behavioral intentions, and subsequent efforts toward collective action. The overall research design will examine the relationships of pedagogical and collaborative techniques to learner outcomes and collective action. Many of these lessons are likely relevant to other collaborative informal science learning contexts. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Marc Stern Lara Hansen