Skip to main content

Community Repository Search Results

resource project Public Programs
In collaboration with a wide variety of non-profit organizations (Project SYNCERE, Little Village Environmental Justice Organization, Chicago Freedom School, Chicago Botanic Garden, Friends of the Chicago River, Institute for Latino Progress), the University of Chicago-Illinois seeks to prepare 30 new science teaching fellows (TFs) while building the capacity of 10 master teaching fellows (MTFs) to be leaders in urban science education. The project will address the professional development of all participants through a three-pronged mechanism which emphasizes (a) content-specific information that focuses on Next Generation Science Standards, (b) culturally relevant practices, and (c) teacher inquiry/research. The work will be performed in partnership with the Chicago Public Schools.

Recent graduates, career changers, and in-service Master Teachers will be provided with (a) a broad range of science concentrations including biology, chemistry, earth and space science, environmental science, and physics, (b) a unique urban perspective on science education that emphasizes diverse learning assets and equity, and (c) professional development opportunities within a community of faculty, teacher-leaders, and non-profit organizations. TFs will be prepared for licensure while earning a Master's in Instructional Leadership: Science Education, learning to teach and examine their practice as it relates to teaching, and learning within specific communities. MTFs will learn to conduct practitioner research and lead teacher inquiry groups examining essential and enduring challenges in STEM teacher practice and student learning. Formative and summative evaluation will focus on analysis of both qualitative and quantitative data related to degree and licensure attainment, the various teaching practice activities (lesson plans, participant surveys, etc.), and progress in meeting the overarching project goals. In doing so, the project will advance knowledge and understanding of the role played by community-based partnerships of university faculty, school teacher-leaders, and local non-profit entities in enhancing teacher education and development, and the circumstances that promote their success. The results of this work will be presented at national meetings of the American Educational Research Association and the American Association of Colleges of Teacher Education
DATE: -
TEAM MEMBERS: Maria Varelas Chandra James Carole Mitchener Aixa Alfonso Daniel Morales-Doyle
resource research Public Programs
In this study, we explored how science teacher candidates construct ideas about science teaching and learning in the context of partnerships with urban community-based organizations. We used a case study design focusing on a group of 10 preservice teachers' participation in educational programming that focused on environmental racism and connected science to larger social issues in an economically dispossessed Mexican community in Chicago. Using theoretical lenses of humanistic science education, justice-centered science pedagogy, and structure-agency dialectic, we studied how preservice high
DATE:
TEAM MEMBERS: Maria Varelas Daniel Morales-Doyle Syeda Raza David Segura Karen Canales Carole Mitchener
resource project Public Programs
This pilot study will examine the effectiveness of an innovative applied social change, community and technology based program on marginalized youths' access, interest, efficacy and motivation to learn and engage in digital technology applications. Using stratified near-peer and peer-to-peer mentoring approaches, the pilot builds on extant literature that indicates that peer-supported hands-on mentoring and experiences can alleviate some barriers to youth engagement in digital technologies, particularly among underrepresented groups. In this project, undergraduate students will mentor and work collaboratively with high school youth primarily of Hispanic descent and community-based organizations to develop creative technology-based solutions to address social issues and challenges within their local communities, culminating in events called Impactathons. These community-hosted local and state-wide events set this pilot project apart from similar work in the field. The Impactathons not only provide a space for intellectual discourse and problem-solving among the undergraduate-youth-community partners but the Impactathons will also codify expertise from scientists, social scientists, technologists, community leaders, and other stakeholders to develop technology-based solutions with real world application. If successful, a distal outcome will be increased youth interest in digital technologies and related fields. In the short term, favorable findings will provide preliminary evidence of success and lay the foundation for a more extensive study in the future.

This pilot project is a collaboration between the Everett Program, a student-led program for Technology and Social Change at the University of California Santa Cruz - a Hispanic Serving Institution - and the Digital NEST, a non-profit, high-tech youth career development and collaboration space for young people ages 14-24. Through this partnership and other recruitment efforts, an estimated 70-90 individuals will participate in the Impactathon pilot program over two years. Nearly two-thirds of the participants are expected to be undergraduate students. They will receive extensive training in near-peer and peer-to-peer mentoring and serve as mentors for and co-innovation developers with the high school youth participants. The undergraduates and youth will partner with local community organizations to identify a local social challenge that can be addressed through a technology-based solution. The emergent challenges will vary and could span the spectrum of STEM and applied social science topics of interest. Working in informal contexts (i.e., afterschool. weekend), the undergraduate-youth-community partner teams will work collaboratively to develop practical technology-based solutions to real world challenges. The teams will convene three times per year, locally and statewide, at student and community led Impactathons to share their work and glean insights from other teams to refine their innovations. In parallel, the research team will examine the effectiveness of the Impactathon model in increasing the undergraduate and youths' interest, motivation, excitement, engagement and learning of digital technologies. In addition to the research, the formative and summative evaluations should provide valuable insights on the effectiveness of the model and its potential for expansion and replication.

The project is co-funded by the Advancing Informal STEM Learning (AISL) Program and STEM +C. The AISL program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. STEM + C focuses on research and development of interdisciplinary and transdisciplinary approaches to the integration of computing within STEM teaching and learning for preK-12 students in both formal and informal settings.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Chris Benner
resource evaluation Public Programs
In June of 2017, the Exploratorium hosted the GENIAL Summit which brought together approximately 91 practitioners, community leaders, diversity-focused organization staff, researchers, and media/marketing specialists from across the country and Puerto Rico for a one and a half day gathering. The National Science Foundation (NSF) funded Summit focused on increasing Latino participation in Informal STEM Learning (ISL) environments by examining these five content strands identified by the GENIAL team: 1. Latino Audiences 2. Marketing, Communicating, and Media 3. Community Collaboration and
DATE:
TEAM MEMBERS: Wendy Meluch
resource research Media and Technology
This research brief highlights findings from the proof of concept pilot year of the Child Trends News Service project. It explores what we have learned regarding best practices for communicating with and engaging Latino parents through short messages on research-informed parenting practices. The findings are grounded in research that substantiates the need to amplify access to child development research, particularly among low-income Latino families; and in communication science research that demonstrates the value of the news media as an information source for child development research.
DATE:
TEAM MEMBERS: Alicia Torres Selma Caal Luz Guerra Angela Rojas
resource research Public Programs
The purpose of this study is to thoroughly describe a program designed to strengthen the pipeline of Latino students into post-secondary science, technology, engineering, and mathematics (STEM) education, and present evaluation data to assess multiyear effectiveness. The program includes a suite of interventions aimed at students and families, and was implemented in a low-income school cluster with a high Latino population in metro Atlanta. Our intervention includes a high school and middle school mentoring program, STEM-focused extracurricular activities (summer camps, research and community
DATE:
TEAM MEMBERS: Diley Hernandez Marion Usselman Shaheen Rana Meltem Alemdar Analia Rao
resource project Public Programs
A collaboration of TERC, MIT, The Woods Hole Oceanographic Institution and community-based dance centers in Boston, this exploratory project seeks to address two main issues in informal science learning: 1) broadening participation in science by exploring how to expand science access to African-American and Latino youth and 2) augmenting science learning in informal contexts, specifically learning physics in community-based dance sites. Building on the growing field of "embodied learning," the project is an outgrowth in part of activities over the past decade at TERC and MIT that have investigated approaches to linking science, human movement and dance. Research in embodied learning investigates how the whole body, not just the brain, contributes to learning. Such research is exploring the potential impacts on learning in school settings and, in this case, in out of school environments. This project is comprised of two parts, the first being an exploration of how African-American and Latino high school students experience learning in the context of robust informal arts-based learning environments such as community dance studios. In the second phase, the collaborative team will then identify and pilot an intervention that includes principles for embodied learning of science, specifically in physics. This phase will begin with MIT undergraduate and graduate students developing the course before transitioning to the community dance studios. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The goal of this pilot feasibility study is to build resources for science learning environments in which African-American and Latino students can develop identities as people who practice and are engaged in scientific inquiry. Youth will work with choreographers, physicists and educators to embody carefully selected physics topics. The guiding hypothesis is that authentic inquiries into scientific topics and methods through embodied learning approaches can provide rich opportunities for African-American and Latino high school-aged youth to learn key ideas in physics and to strengthen confidence in their ability to become scientists. A design- based research approach will be used, with data being derived from surveys, interviews, observational field notes, video documentation, a case study, and physical artifacts produced by participants. The study will provide the groundwork for producing a set of potential design principles for future projects relating to informal learning contexts, art and science education with African American and Latino youth.
DATE: -
TEAM MEMBERS: Folashade Cromwell Solomon Tracey Wright Lawrence Pratt
resource project Public Programs
Abstract: We aim to disrupt the multigenerational cycle of poverty in our rural indigenous (18% Native American and 82% Hispanic) community by training our successful college students to serve as role models in our schools. Poverty has led to low educational aspirations and expectations that plague our entire community. As such, its disruption requires a collective effort from our entire community. Our Collective unites two local public colleges, 3 school systems, 2 libraries, 1 museum, 1 national laboratory and four local organizations devoted to youth development. Together we will focus on raising aspirations and expectations in STEM (Science, Technology, Engineering and Mathematics) topics, for STEM deficiencies among 9th graders place them at risk of dropping out while STEM deficiencies among 11th and 12th graders preclude them from pursuing STEM majors in college and therefore from pursuing well paid STEM careers. We will accomplish this by training, placing, supporting, and assessing the impact of, an indigenous STEM mentor corps of successful undergraduate role models. By changing STEM aspirations and expectations while heightening their own sense of self-efficacy, we expect this corps to replenish itself and so permanently increase the flow of the state's indigenous populations into STEM majors and careers in line with NSF's mission to promote the progress of science while advancing the national health, prosperity and welfare.

Our broader goal is to focus the talents and energies of a diverse collective of community stakeholders on the empowerment of its local college population to address and solve a STEM disparity that bears directly on the community's well-being in a fashion that is generalizable to other marginalized communities. The scope of our project is defined by six tightly coupled new programs: three bringing indigenous STEM mentors to students, one training mentors, one training mentees to value and grow their network of mentors, and one training teachers to partner with us in STEM. The intellectual merit of our project lies not only in its assertion that authentic STEM mentors will exert an outsize influence in their communities while increasing their own sense of self-efficacy, but in the creation and careful application of instruments that assess the factors that determine teens' attitudes, career interests, and behaviors toward a STEM future; and mentors' sense of self development and progress through STEM programs. More precisely, evaluation of the programs has the potential to clarify two important questions about the role of college-age mentors in schools: (1) To what degree is the protege's academic performance and perceived scholastic competence mediated by the mentor's impact on (a) the quality of the protege's parental relationship and (b) the social capital of the allied classroom teacher; (2) To what degree does the quality of the student mentor's relationships with faculty and peers mediate the impact of her serving as mentor on her self-efficacy, academic performance, and leadership skills?
DATE: -
TEAM MEMBERS: Steven Cox Ulises Ricoy David Torres
resource project Public Programs
The Morgan State University INCLUDES project will build on an existing regional partnership of four Historically Black Colleges and Universities that are working together to improve STEM outcomes for middle school minority male students that are local to Morgan State in Baltimore, North Carolina A&T in Greensboro, Jackson State in Mississippi, and Kentucky State in Frankfort. Additional partners include SRI International, the National CARES Mentoring Network, and the Verizon Foundation. Using the collective impact-style approaches such as planning and implementing a Network Improvement Community (NIC), developing a shared agenda and implementing mutually reinforcing activities, these partners will address two common goals: (1) Broaden the participation of underrepresented minority males in science and engineering through educational experiences that prepare them for careers in STEM fields; and (2) Create a Network Improvement Community focused on STEM achievement in minority males. Program elements include high-quality instruction in STEM content, mentoring, and professional development. The project will expand to include eight additional partners (six HBCUs and two Hispanic-Serving Institutions) and schools and districts in communities local to their campuses. The INCLUDES pilot will help scale innovations that target impacting minorities in STEM.

The project will develop STEM learning pathways for middle school minority males by harnessing the collective impact of 12 university partners, local K-12 schools and districts with which they partner, and surrounding community organizations and businesses with a vested interest in achieving common goals. Products will include a roadmap for addressing the problem through a Network Improvement Community, a website that will contribute to the knowledge base regarding effective strategies for enhancing STEM educational opportunities for minority males, and common metrics, assessments, and shared measurement systems that will be used to measure the collective impact of the Network Improvement Community.
DATE: -
TEAM MEMBERS: Jumoke Ladeji-Osias Cindy Ziker Geneva Haertel Kamal Ali Ayanna Gill Derrick Gilmore Clay Gloster
resource project Public Programs
The overall goal of this project is to develop and evaluate a community model of informal genomic education that is culturally and educationally appropriate for low-literacy Latino adults born in Mexico and Central America (MCA). The community engagement strategy and materials created will be designed to lead to three learning outcomes: increased interest and engagement with genomics, change in science, technology, engineering, and mathematics (STEM) attitudes and self-identity, and increased understanding about gene function and the human genome. The model created in this project will have the potential to inform other educational efforts, nationally. Semi-structured in-depth interviews will be conducted in Spanish with 60 MCA Latinos to delineate beliefs and knowledge about genetic and genomic concepts and transmission of traits. Interview transcripts will be systematically analyzed to identify explanations about trait transmission, and familiarity with genetic and genomic concepts. Variation in responses across geographic and cultural regions will be noted. Knowledge from this analysis will be used to develop a meaningful community-based learning program about genomics. Lay community educators will facilitate informal learning with MCA adults about genetics and genomics, including gene-environment interactions. This project will use information about environmental exposures (e.g., residential pesticides) as a vehicle to pique participants' interest and illustrate genetic and genomic content. It will compare outcomes for 100 participants who receive practical strategies only to reduce negative and increase positive environmental exposures, respectively, to 100 participants who also receive genetic and genomic content. The strategy and materials will be disseminated through journal articles and presentations at meetings that focus on informal STEM education. The process and content will be rigorously evaluated throughout the project. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Joanne Sandberg
resource project Public Programs
Rural communities across the Nation are, in general, underserved in terms of the various forms of STEM education. Clearly, they are under-represented in the realm of contemporary STEM subjects often because they are geographically isolated and cannot travel to cities where there are Science and Museum Centers for informal education opportunities. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This award will, in a collaborative effort within the community, bring STEM activities to selected communities in Arizona. Among the initial activities, there will be a STEM festival highlighting aspects of the community and its assets in an effort to gather support and begin to give perspective on identity for an extended effort of longevity. Further, these communities will be networked to facilitate discussion and to enhance effectiveness.

This project will develop STEM activities and STEM learning within a selected community by giving the community and its residents identity and opportunities for youth development and career choices. The selected communities in Arizona represent a diverse group that includes Native Americans and Latinos. In collaboration with community residents, a designed plan will be established that satisfies the needs and opportunities that can be derived from the extant community assets whether it is mining, tourism, or government facilities. Evaluation efforts are set to determine what the key features and methodologies are that facilitate STEM knowledge acquisition for each rural community. This project represents seminal and foundational work in the area of rural informal STEM education. Researchers will explore the following questions: 1) understanding how rural communities currently perceive, access, and engage in informal science learning, and the extent to which they identify themselves and/or their community in relation to science; and 2) the extent to which relevant, place-based networks can increase public awareness of local STEM assets, resources, and opportunities, and foster a science-related identity at both the personal and community level. These data will be compared to data on other rural community projects in the AISL portfolio. The partners in this effort include the Arizona Science Center, community leaders from four rural regions in Arizona, Arizona State University, and the Center of Science and Industry.
DATE: -
TEAM MEMBERS: Jeremy Babendure Andy Fourlis James Middleton Jill Stein
resource project Public Programs
A frequently missing element in environmental education programs is a concerted effort by communities, organizations, government, and academic stakeholders to build meaningful partnerships and cultivate informal science learning opportunities via public participation in environmental research. This collaborative approach not only makes scientific information more readily available, it also engages community members in the processes of scientific inquiry, synthesis, data interpretation, and the translation of results into action. This project will build a co-created citizen science program coupled with a peer education model and an extensive communication of results to increase environmental STEM literacy. The project targets historically underrepresented populations that are likely to be disproportionately impacted by climate, water scarcity, and food security. Based upon past needs assessments in the targeted communities, gardens irrigated by harvested rainwater will become hubs for environmental STEM education and research. For this project, gardens irrigated by harvested rainwater will serve as hubs for environmental literacy education efforts. Researchers from the University of Arizona and Sonora Environmental Research Institute will work alongside community environmental health workers, who will then train families residing in environmentally compromised areas (urban and rural) on how to monitor their soil, plant, and harvested water quality. The project aims to: (1) co-produce environmental monitoring, exposure, and risk data in a form that will be directly relevant to the participants' lives, (2) increase the community's involvement in environmental decision-making, and (3) improve environmental STEM literacy and learning in underserved rural and urban communities. The project will investigate and gather extensive quantitative and quantitative data to understand how: (1) participation in a co-created citizen science project enhances a participant's overall environmental STEM literacy; (2) a peer-education model coupled with a co-created citizen science program affects participation of historically underrepresented groups in citizen science; and (3) the environmental monitoring approach influences the participant's environmental health learning outcomes and understanding of the scientific method. In parallel, this project will evaluate the role of local-based knowledge mediators and different mechanisms to communicate results. These findings will advance the fields of informal science education, environmental science, and risk communication. Concomitantly, the project will facilitate the co-generation of a robust dataset that will not only inform guidelines and recommendations for harvested rainwater use, it will build capacity in underserved communities and inform the safe and sustainable production of food sources. This research effort is especially critical for populations in arid and semiarid environments, which account for ~40% of the global land area and are inhabited by one-third of the world's population. This program will be available in English and Spanish and can truly democratize environmental STEM research and policy. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Monica Ramirez-Andreotta Aminata Kilungo Leif Abrell Jean McLain Robert Root