Skip to main content

Community Repository Search Results

resource evaluation Public Programs
A two-year pilot a two-year pilot and feasibility study funded by NSF’s Advancing Informal STEM Learning (AISL) Program (NSF Award # 1906846)
DATE:
TEAM MEMBERS: Kathleen Gray Dana Haine Rebekah Davis Shaun Kellogg
resource research Websites, Mobile Apps, and Online Media
This brief discusses the PLUM LANDING Explore Outdoors Toolkit, a new set of free, public media resources designed to help informal educators and parents infuse science learning into outdoor recreation. Developed by trusted media producer WGBH in partnership with researchers at Education Development Center (EDC), the Toolkit aims to get children (ages 6–9) from low-income, urban communities outside so they can explore the environment around them while debunking the myth that nature is something that only exists beyond city limits.
DATE:
TEAM MEMBERS: Marion Goldstein Elizabeth Pierson Jamie Kynn Lisa Famularo
resource research Public Programs
In this case study, we highlight the work of the Bay Area STEM Ecosystem, which aims to increase equity and access to STEM learning opportunities in underserved communities. First, we lay out the problems they are trying to solve and give a high level overview of the Bay Area STEM Ecosystem’s approach to addressing them. Then, based on field observations and interviews, we highlight both the successes and some missed opportunities from the first collaborative program of this Ecosystem. Both the successes of The Bay Area STEM Ecosystem--as well as the partners’ willingness to share and examine
DATE:
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at the University of Colorado. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Nichole Pinkard
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at DePaul University. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Bill Penuel Tamara Sumner Nichole Pinkard
resource project Public Programs
This project plans to develop a partnership with KCTS Public Television, Laubach Literacy Action, and the National Alliance of Urban Literacy Coalitions to develop an implementation plan to promote higher science literacy in at-risk families in inner city settings. These organizations reach families that seldom participate in formal and informal science learning programs. A training design for literacy providers to use science literacy materials as an integrated part of their adult literacy curriculum will be developed. Video and print materials that are specifically designed for low literacy adults will be developed. These are expected to be simple, fun, and effective ways to foster the love of science and learning in themselves and their children. Front-end evaluation focus groups will be conducted with providers and parents to gain insights into the specific needs and general expectations of the parents and literacy providers, and to get feedback on the proposed project materials.
DATE: -
TEAM MEMBERS: James Burrows Kathleen Burrows
resource project Public Programs
The Discovery Center is a "hands-on" science museum with a mission to provide the public with a basic science literacy. The proposed HOFPP project is an outreach program that will take an informal science education activity to disadvantaged parents and children in the facilities of four (first year) collaborating "parents": The Urban League, the Spanish Action League, the North American Indian Club and Girls Inc. of Central NY. The purpose of the program is to encourage and enable parents of disadvantaged school children to play an active role in their child child's education. Phase I of the program is implemented as a series of ten weekly classes in which parents and children will work together on hands-on science activities; Phase 2 follows with a science club program. Graduates will be informally channeled into an inner-city magnet school for science and math. Past Discovery Center outreach programs have already demonstrated ability to attract disadvantaged parents. The proposed program will touch 1,000 disadvantaged persons during the initial three-year period. During the third year the HOFPP project will be transported and implemented at a Science museum in another New York State community. A three year cost-shared NSF project is proposed that will be later sustained by The Discovery Center operating budget with local donations. A professional outside evaluation will be performed to measure program success. Program reports, materials and consultation will be propagated to other interested organizations to gain maximum impact.
DATE: -
TEAM MEMBERS: Rachel Nettleton Mary Stebbins Annette Salsbery Elizabeth Kneale
resource project Public Programs
"Under the Rock: An Experiment in Neighborhood Exhibit-Making" is a project that will engage children in the development of exhibits as well as present information about backyard ecology. The Children's Museum staff will work with Federated Dorchester Neighborhood Houses (a group of inner city neighborhood centers in Boston) to develop a model activity that uses the theory and practice of exhibit making as a tool to engage children in science learning in their neighborhoods. They will work with children and their parents in the exploration of insect life in their urban settings and presentation of their findings in exhibits the children will make. Exhibit making includes the entire process of: studying live insects, doing research, writing text, designing and building interactive activities for an exhibit about insects, and marketing the exhibit. Exhibit making has been chosen as the pedagogical technique because it parallels creative work done in the real world; it involves people working together in teams, and utilizes different skills and intelligences of the participants. In addition to the exhibits, other results of this project will include: an educator's guidebook documenting the process of exhibit-making in community centers; a proposal for an activity book for kids with writing samples and illustrations that will be submitted to a publisher; video and electronic resources; and contributions and recommendations for the Museum's "Under the Rock" exhibit, a new exhibit to be developed subsequent to the completion of the first two phases of this project.
DATE: -
TEAM MEMBERS: Signe Hanson Timothy Porter Dorothy Merrill
resource project Public Programs
Michigan Technological University will collaborate with David Heil and Associates to implement the Family Engineering Program, working in conjunction with student chapters of engineering societies such as the American Society for Engineering Education (ASEE), the Society of Hispanic Professionals (SHP) and a host of youth and community organizations. The Family Engineering Program is designed to increase technological literacy by introducing children ages 5-12 and their parents/caregivers to the field of engineering using the principles of design. The project will reach socio-economically diverse audiences in the upper peninsula of Michigan including Native American, Hispanic, Asian, and African American families. The secondary audience includes university STEM majors, informal science educators, and STEM professionals that are trained to deliver the program to families. A well-researched five step engineering design process utilized in the school-based Engineering is Elementary curriculum will be incorporated into mini design challenges and activities based in a variety of fields such as agricultural, chemical, environmental, and biomedical engineering. Deliverables include the Family Engineering event model, Family Engineering Activity Guide, Family Engineering Nights, project website, and facilitator training workshops. The activity guide will be pilot tested, field tested, and disseminated for use in urban, suburban, and rural settings. Strategic impact will result from the development of content-rich engineering activities for families and the dissemination of a project model that incorporates the expertise of engineering and educational professionals at multiple levels of implementation. It is anticipated that 300 facilitators and 7,000-10,000 parents and children will be directly impacted by this effort, while facilitator training may result in more than 27,000 program participants.
DATE: -
TEAM MEMBERS: Neil Hutzler Eric Iversen Christine Cunningham Joan Chadde David Heil