Skip to main content

Community Repository Search Results

resource research Public Programs
This poster was presented at the 2021 NSF AISL Awardee Meeting. Programming includes Neighborhood Walks led by teams of scientists/engineers and artists Community Workshops, Local Artist Projects, and Youth Mentorship focused on neighborhood and citywide water issues Intergenerational participation, from seniors and adult learners to young adults, teens, and middle schoolers
DATE:
resource project Public Programs
This Innovations in Development project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Specifically, this project connects Native Hawaiian youth ages 12-17 and their family members to STEM by channeling their cultural relationship with ʻāina, the sustaining elements of the natural world including the land, sea, and air. This project seeks to: broaden participation of Native Hawaiian youth who have been historically underrepresented in STEM; actively uphold Native Hawaiian ways of knowing and traditional knowledge; articulate the science rooted in cultural wisdom; and bring STEM into the lives of participants as they connect to the ʻāina. In partnership with six ʻāina-based community organizations across Hawaiʻi, this project will develop, implement, and study ʻāina-centered environmental education activities that explore solutions to local environmental problems. For example, in one module youth and their families will explore of a section of a nearby stream; identify and discuss the native, non-native, and invasive species; remove invasive species from a small section of the stream and make observations leading to discussions of unintended consequences and systemic impacts; ultimately, learners will meet at additional local waterways to engage in similar explorations and discussions, transferring their knowledge to understanding the impacts of construction on local streams and coral reefs. To this effort, the community-based organizations bring their expertise in preserving Hawaiian culture and sustainable island lifestyle, including rural and urban systems such as farming and irrigation traditions and the restoration of cultural sites. University of Hawai’i faculty and staff bring expertise in Environmental Science, Biology, Hawaiian Studies and Problem-Based Learning Curriculum Development. This project further supports organizational learning and sharing among the six community-based organizations. Grounded in Hawaiian ʻAʻo, where learning and teaching are the same interaction, community-based organizations will create a Community of Practice that will co-learn Problem-Based Learning pedagogy; co-learn and engage in research and evaluation methods; and share experiential and traditional knowledge to co-develop the ʻāina-based environmental education activities.

This project is uniquely situated to study the impact of community-led culturally relevant pedagogy on Hawaiian learners’ interests and connections to environmental science, and to understand ʻāina-based learning through empirical research. Research methods draw on Community-Based Participatory Research and Indigenous Research Methods to develop a collaborative research design process incorporated into the project’s key components. Community members, researchers, and evaluators will work together to examine the following research questions: 1) How does environmental Problem-Based Learning situate within ʻāina-based informal contexts?; 2) What are the environmental education learning impacts of ʻāina-based activities on youth and family participants?; and 3) How does the ʻāina-centered Problem-Based Learning approach to informal STEM education support STEM knowledge, interest and awareness? The evaluation will employ a mixed-methods participatory design to explore program efficacy, fidelity, and implementation more broadly across community-based sites, as well as program sustainability within each community-based site. Anticipated project outcomes are a 15-week organizational learning and sharing program with six ʻāina-based community organizations and 72 staff; the design and implementation of 18 activities to reach 360 youth and at least one of their family members; and the launch of an ʻāina-based STEM Community of Practice. The project’s research and development process for ʻāina-centered environmental education activities will be shared broadly and provide a useful example for other organizations locally and nationally working in informal settings with Native or Indigenous populations.
DATE: -
TEAM MEMBERS: Lui Hokoana Hokulani Holt-Padilla Jaymee Nanasi Davis
resource project Public Programs
This project is a Smart and Connected Communities award. The community is part of Evanston, Illinois and is composed of the lead partners described below:


EvanSTEM which is a in-school/out of school time (OST) program to improve access and engagement for students in Evanston who have underperformed or been underrepresented in STEM.
McGaw YMCA which consists of 12,000 families serving 20,000 individuals and supporting technology and makerspace activities (MetaMedia) in a safe community atmosphere.
Office of Community Education Partnerships (OCEP) at Northwestern University which provides support for the university and community to collaborate on research, teaching, and service initiatives.


This partnership will develop a new approach to learning enagement through the STEAM (Science, Technology, Engineering, Arts, and Mathematics) interests of all young people in Evanston. This project is entitled Interests for All (I4All) and builds upon existing research results of the two Principal Investigators (PIs) and previous partnerships between the lead partners (EvanSTEM and MetaMedia had OCEP as a founding partner). I4All also brings together Evanston school districts, OST prividers, the city, and Evanston's Northwestern University as participants.

In particular the project builds on PI Pinkard's Cities of Learning project and co-PI Stevens' FUSE Studios project. Both of these projects have explicit goals to broaden participation in STEAM pursuits, a goal that is significantly advanced through I4All. In this project, I4All infrastructure will be evaluated using quantitative metrics that will tell the researchers whether and to what degree Evanston youth are finding and developing their STEAM interests and whether the I4All infrastructure supports a significantly more equitable distribution of opportunities to youth. The researchers will also conduct in depth qualitative case studies of youth interest development. These longitudinal studies will complement the quantitative metrics of participation and give measures that will be used in informing changes in I4All as part of the PIs Design Based Implementation Research approach. The artifacts produced in I4All include FUSE studio projects, software infrastructure to guide the students through OST and in-school activities and to provide to the students actionable information as to logistics for participation in I4All activities, and data that will be available to all stakeholders to evaluate the effectiveness of I4All. Additionally, this research has the potential to provide for scaling this model to different communities, leveraging the OST network in one community to begin to offer professional development more widely throughout the school districts and as an exemplar for other districts. These research results could also affect strategies and policies created by local school officials and community organizations regarding how to work together to create local learning environments to create an ecosystem where formal and informal learning spaces support and reinforce STEAM knowledge.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Nichole Pinkard Reed Stevens
resource research Public Programs
This project created a social programmable robot to engage middle school girls in computer programming.
DATE:
TEAM MEMBERS: Erin Walker Amy Ogan Kimberly Scott
resource research Community Outreach Programs
Schools often have limited resources to devote to science education, which can impact student interest in and preparedness for careers in STEM. Seattle Children’s Research Institute created the Science Adventure Lab, a mobile laboratory program, to support and enrich science education at low-resource schools and stimulate interest in science and pursuing a career in STEM. The mobile laboratory provides students with the unique opportunity to fully immerse themselves in authentic, hands-on science learning with scientists. This limits the burden on school resources and reduces disruptions to
DATE:
TEAM MEMBERS: William H Roden Rebecca Howsmon Rebecca A Carter Mark Ruffo Amanda L Jones
resource research Community Outreach Programs
Many urban New Yorkers believe that the Hudson River is so polluted that nothing could possibly live there. In reality, the estuary is thriving, and The River Project (TRP), a marine science field station in lower Manhattan, exists to showcase its vast biodiversity through place-based education. In 2014, TRP began collaborating on a city-wide initiative with New York Harbor Foundation and eight other partner organizations to integrate restoration science into Title I middle school curricula through the Curriculum and Community Enterprise for Restoration Science (CCERS). Teachers in the
DATE:
TEAM MEMBERS: Elisa Caref Melissa Rex Annie Lederberg Gaylen Moore
resource research Public Programs
The purpose of this study is to thoroughly describe a program designed to strengthen the pipeline of Latino students into post-secondary science, technology, engineering, and mathematics (STEM) education, and present evaluation data to assess multiyear effectiveness. The program includes a suite of interventions aimed at students and families, and was implemented in a low-income school cluster with a high Latino population in metro Atlanta. Our intervention includes a high school and middle school mentoring program, STEM-focused extracurricular activities (summer camps, research and community
DATE:
TEAM MEMBERS: Diley Hernandez Marion Usselman Shaheen Rana Meltem Alemdar Analia Rao
resource research Public Programs
In this case study, we highlight the work of the Bay Area STEM Ecosystem, which aims to increase equity and access to STEM learning opportunities in underserved communities. First, we lay out the problems they are trying to solve and give a high level overview of the Bay Area STEM Ecosystem’s approach to addressing them. Then, based on field observations and interviews, we highlight both the successes and some missed opportunities from the first collaborative program of this Ecosystem. Both the successes of The Bay Area STEM Ecosystem--as well as the partners’ willingness to share and examine
DATE:
resource research Public Programs
Learn how to create opportunities for young people from low-income, ethnically diverse communities to learn about growing food, doing science, and how science can help them contribute to their community in positive ways. The authors developed a program that integrates hydroponics (a method of growing plants indoors without soil) into both in-school and out-of-school educational settings.
DATE:
TEAM MEMBERS: Amie Patchen Andrea Aeschlimann Anne Vera-Cruz Anushree Kamath Deborah Jose Jackie DeLisi Michael Barnett Paul Madden Rajeev Rupani
resource project Media and Technology
Public Participation in Scientific Research (PPSR), often referred to as crowdsourcing or citizen science, engages participants in authentic research, which both advances science discovery as well as increases the potential for participants' understanding and use of science in their lives and careers. This four year research project examines youth participation in PPSR projects that are facilitated by Natural History Museums (NHMs). NHMs, like PPSR, have a dual focus on scientific research and science, technology, engineering, and mathematics (STEM) education. The NHMs in this project have established in-person and online PPSR programs and have close ties with local urban community-based organizations. Together, these traits make NHMs appropriate informal learning settings to study how young people participate in PPSR and what they learn. This study focuses on three types of PPSR experiences: short-term outdoor events like bioblitzes, long-term outdoor environmental monitoring projects, and online PPSR projects such as crowdsourcing the ID of field observations. The findings of this study will be shared through PPSR networks as well as throughout the field in informal STEM learning in order to strength youth programming in STEM, such that youth are empowered to engage in STEM research and activities in their communities. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

The study employs observations, surveys, interviews, and learning analytics to explore three overarching questions about youth learning: 1) What is the nature of the learning environments and what activities do youth engage in when participating in NHM-led PPSR? 2) To what extent do youth develop three science learning outcomes, through participation in NHM-led citizen science programs? The three are: a) An understanding of the science content, b) identification of roles for themselves in the practice of science, and c) a sense of agency for taking actions using science? 3) What program features and settings in NHM-led PPSR foster these three science learning outcomes among youth? Based on studies occurring at multiple NHMs in the US and the UK, the broader impact of this study includes providing research-based recommendations for NHM practitioners that will help make PPSR projects and learning science more accessible and productive for youth. This project is collaboration between education researchers at University of California, Davis and Open University (UK), and Oxford University (UK) and citizen science practitioners, educators, and environmental scientists at three NHMs in the US and UK: NHM London, California Academy of Sciences, and NHM Los Angeles.
DATE: -
TEAM MEMBERS: Heidi Ballard Alison Young Lila Higgins Lucy Robinson Christothea Herodotou Grant Miller
resource project Public Programs
General Summary

Because of the siloed nature of formal educational curricula, students who opt out of STEM coursework, for whatever reason, lose the opportunity to engage with the domain of science almost entirely, thereby closing the door to the STEM workforce pipeline. This disproportionately impacts students of color and women. This project advances an alliance that consists of a consortium of community-engaged partners, including university and k-12 educational agencies, community colleges, community organizations, cultural institutions and local businesses. The project built around this alliance will leverage interdisciplinary spaces in the curriculum, particularly the humanities and social sciences, across academic levels, as a forum for integrating and applying STEM to bear on the practical, social, economic and political issues of modern life. The PIs establish a physical Community STEM Center as an anchoring institution for STEM engagement. This Center will be situated within the community that the alliance serves, bringing STEM opportunities and engagement to students instead of asking them to come where STEM education is currently provided. The activities enacted through the Community STEM Center will focus on enduring problems experienced by the communities, where students, community residents, teachers, and experts from higher education, industry and other community-based entities can come together to work on understanding them and developing evidenced centered advocacy as a means for addressing them. To facilitate the work at the Community STEM Center, the project creates a Community Ambassadors Program (CAP), leveraging participation across alliance members in partnership with the community. This Design and Development Launch Pilot will cultivate the necessary knowledgebase to develop a scalable model for implementation across diverse urban communities.

Technical Summary

This Design and Development Launch Pilot focuses on shifting the narrative of STEM education away from a solitary focus on formalized educational experiences and targets STEM content. This project develops and facilitates a parallel set of activities designed to engage under-represented students in learning how and why STEM is relevant to their lives, and approached through new and non-traditional educational dimensions. The five main objectives of this proposed pilot are to: (1) Develop a pilot alliance of community-engaged partners, including university and k-12 educational agencies, community colleges, community organizations, cultural institutions and industry;(2)Establish a physical Community STEM Advocacy Center as an anchoring institution for change embedded within the community that the pilot alliance serves; (3) Leverage interdisciplinary spaces in curricula, across academic levels, particularly the humanities and social sciences, as a forum for integrating and applying STEM to bear on the practical, social, economic and political issues of modern life; (4) Create a Community Ambassadors Program (CAP), leveraging participation across higher education pilot alliance members in partnership with the community; and (5)Conduct an evaluation of project initiatives and research regarding the usability and feasibility of a systemic approach to developing community-based, interdisciplinary pathways to broaden STEM participation pathways. Efforts to examine the impact of this community-based, interdisciplinary approach concentrates on the proximal outcomes related to STEM interest, self-efficacy and identity. Data will be collected in pre/post format across our three constituent samples: 1) Community STEM Advocacy Center participants; 2) k-12 students; and, 3) postsecondary students. Analysis of data will be conducted through MANCOVAs to account for potential co-variation among construct scores. Qualitative data will also be collected to contextualize findings and enable the development of a rich case study. At least two observations will be conducted in the Community STEM Advocacy Center and the two classroom implementations to document engagement, participant interactions and level of STEM content.
DATE: -
TEAM MEMBERS: Kimberly Lawless Donald Wink Ludwig Carlos Nitsche Aixa Alfonso Jeremiah Abiade
resource project Media and Technology
This is an Early-concept Grant for Exploratory Research supporting research in Smart and Connected Communities. The research supported by the award is collaborative with research at the University of Colorado. The researchers are studying the use of technologies to enable communities to connect youth and youth organizations to effectively support diverse learning pathways for all students. These communities, the youth, the youth organizations, formal and informal education organizations, and civic organizations form a learning ecology. The DePaul University researchers will design and implement a smart community infrastructure in the City of Chicago to track real-time student participation in community STEM activities and to develop mobile applications for both students and adults. The smart community infrastructure will bring together information from a variety of sources that affect students' participation in community activities. These include geographic information (e.g., where the student lives, where the activities take place, the student transportation options, the school the student attends), student related information (e.g., the education and experience background of the student, the economic status of the student, students' schedules), and activity information (e.g., location of activity, requirements for participation). The University of Colorado researchers will take the lead on analyzing these data in terms of a community learning ecologies framework and will explore computational approaches (i.e., recommender systems, visualizations of learning opportunities) to improve youth exploration and uptake of interests and programs. These smart technologies are then used to reduce the friction in the learning connection infrastructure (called L3 for informal, formal, and virtual learning) to enable the student to access opportunities for participation in STEM activities that are most feasible and most appropriate for the student. Such a flexible computational approach is needed to support the necessary diversity of potential recommendations: new interests for youth to explore; specific programs based on interests, friends' activities, or geographic accessibility; or programs needed to "level-up" (develop deeper skills) and complete skills to enhance youths' learning portfolios. Although this information was always available, it was never integrated so it could be used to serve the community of both learners and the providers and to provide measurable student learning and participation outcomes. The learning ecologies theoretical framework and supporting computational methods are a contribution to the state of the art in studying afterschool learning opportunities. While the concept of learning ecologies is not new, to date, no one has offered such a systematic and theoretically-grounded portfolio of measures for characterizing the health and resilience of STEM learning ecologies at multiple scales. The theoretical frameworks and concepts draw together multiple research and application domains: computer science, sociology of education, complexity science, and urban planning. The L3 Connects infrastructure itself represents an unprecedented opportunities for conducting "living lab" experiments to improve stakeholder experience of linking providers to a single network and linking youth to more expanded and varied opportunities. The University of Colorado team will employ three methods: mapping, modeling, and linking youth to STEM learning opportunities in school and out of school settings in a large urban city (Chicago). The recommender system will be embedded into youth and parent facing mobile apps, enabling the team to characterize the degree to which content-based, collaborative filtering, or constraint based recommendations influence youth actions. The project will result in two measurable outcomes of importance to key L3 stakeholder groups: a 10% increase in the number of providers (programs that are part of the infrastructure) in target neighborhoods and a 20% increase in the number of youth participating in programs.
DATE: -
TEAM MEMBERS: Nichole Pinkard