Skip to main content

Community Repository Search Results

resource research Media and Technology
Peer production projects involve people in many tasks, from editing articles to analyzing datasets. To facilitate mastery of these practices, projects offer a number of learning resources, ranging from project-defined FAQsto individually-oriented search tools and communal discussion boards. However, it is not clear which project resources best support participant learning, overall and at different stages of engagement. We draw on Sørensen's framework of forms of presence to distinguish three types of engagement with learning resources: authoritative, agent-centered and communal. We assigned
DATE:
TEAM MEMBERS: Corey Brian Jackson Carsten Osterlund Kevin Crowston Mahboobeh Harandi Laura Trouille
resource research Public Programs
Computing fields are foundational to most STEM disciplines and the only STEM discipline to show a consistent decline in women's representation since 1990, making it an important field for STEM educators to study. The explanation for the underrepresentation of women and girls in computing is twofold: a sense that they do not fit within the stereotypes associated with computing and a lack of access to computer games and technologies beginning at an early age (Richard, 2016). Informal coding education programs are uniquely situated to counter these hurdles because they can offer additional
DATE:
TEAM MEMBERS: Roxanne Hughes Jennifer schellinger Kari Roberts
resource research Media and Technology
This NOVA multiplatform media initiative consisted of a 2-hour nationally broadcast PBS documentary, Polar Extremes; a 10-part original digital series, Antarctic Extremes; an interactive game, Polar Lab; accompanying polar-themed digital shorts, radio stories, text reporting, and social media content; a collection of educational resources on PBS LearningMedia; and community screening events and virtual field trips for science classrooms. Across multiple media platforms the project’s video content had nearly 13 million views. The research explored the potential for informal STEM learning
DATE:
TEAM MEMBERS: Lisa Leombruni Heather Hodges
resource research Public Programs
How can we navigate partnerships with science institutions to better implement informal science education projects in underserved communities? We hope you’ll take some time to go through this booklet and answer the questions honestly and thoroughly. The process will help your community-based organization navigate partnerships with science institutions better to benefit your community.
DATE:
TEAM MEMBERS: Marilu Lopez Fretts
resource research Public Programs
Do you want to implement projects and develop strong collaborations in diverse or “underserved” communities? This workbook is a product of research conducted by community-based organizations and the Cornell Lab of Ornithology over three years, focused on how to create equitable partnerships between informal science institutions and community-based organizations in underrepresented communities. The objective is to improve equity, diversity, and inclusion in STEM (Science, Technology, Engineering, and Mathematics). The research comes from questions asked by community researchers to more than 30
DATE:
TEAM MEMBERS: Marilu Lopez Fretts
resource research Informal/Formal Connections
Overlaying Computer Science (CS) courses on top of inequitable schooling systems will not move us toward “CS for All.” This paper prioritizes the perspectives of minoritized students enrolled in high school CS classrooms across a large, urban school district in the Western United States, to help inform how CS can truly be for all.
DATE:
TEAM MEMBERS: Jean Ryoo Tiera Tanksley Cynthia Estrada Jane Margolis
resource research Professional Development, Conferences, and Networks
With support from the National Science Foundation, the STEM Effect project was undertaken in partnership by staff from the Education Development Center, the National Girls Collaborative Project (NGCP) and the Intrepid Sea, Air & Space Museum. Through a variety of methods, the project convened representatives from cultural institutions (museums, science centers, zoos, botanical gardens and aquaria) from across the country which provide STEM programming aimed at increasing the participation of girls and women in science, technology, engineering and mathematics (STEM), along with researchers, and
DATE:
TEAM MEMBERS: Lynda Kennedy Babette Moeller Alicia Santiago Sheri Levinsky-Raskin Wendy Martin Karen Peterson Goodman Research Group
resource project Public Programs
Free-choice and interest-driven learning activities are a highly significant source of STEM (science, technology, engineering, and mathematics) learning for adults through their lifespans. Gardening is one such activity that is widespread across communities with one in every fifty American adults reporting an interest in gardening/plants and who associate that interest/hobby with science. While the terms interest and hobby are related, the latter refers to something one actively does, not just thinks about doing. Adults who seek out learning and participation opportunities in highly visible community spaces (e.g., gardening clubs, science centers, botanical gardens) are likely to be White and well-educated. Further understanding is needed of when and how community members from other demographic groups access different resources (people, organizations, and places) for information and opportunities, and what influences them to do so. This Pilot and Feasibility Study will explore informal learning networks in Alameda County, California, specifically around gardeners and gardening. Researchers will use surveys, focus groups, and program observations to gather data on how those who pursue self-directed scientific learning about gardening access information. Of interest is how the differential access to and pursuit of information occurs among diverse community members, especially those outside of more established Master Gardener and other organized gardening programs. This research will: 1) contribute to understanding of the resources that interest-driven adult STEM learners access, describing the barriers they perceive and how/if the accessed resources differ by gender, race, or socioeconomics; 2) determine the feasibility of a sampling approach to gather data from individuals in demographic groups who may not have been reached in prior research efforts; and 3) generate insights for informal science education practitioners and researchers about how to better support diverse interest-driven STEM learners. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

It is hypothesized that there is a large percentage of individuals from non-dominant populations engaged in free-choice STEM learning; past efforts have likely under-counted the participation of individuals from these communities. To achieve the research aims the research team will utilize respondent-driven sampling, engaging gardening hobbyists' social contacts to recruit participants, and collect data from diverse (gender, race, socioeconomics) urban gardeners who may be differently connected to STEM learning ecosystem resources/organizations than their highly visible peers. This approach will be used to investigate the behaviors, perceptions, and outcomes related to STEM learning such as development of self-efficacy and science identity. Focus groups will provide context for themes that arise in the survey data and clarify hobbyists' participation preferences and experiences. In situ observations of learning environments comprise the third mechanism for collecting data. All three data sources will support triangulation of results and contribute to the findings. Key outcomes of this project will be to determine if the target population has been reached through the sampling approach, to identify methodological guidelines for sampling with an intent to reach those from populations under-represented in STEM-related free-choice activities, and to clarify which network variables are most useful to study. This research lays the foundation for future work. It is anticipated that the approach developed and tested in this research may be adapted by others in the future and will have the potential to serve as a model for community-based organizations and researchers interested in studying the learning ecosystems of previously hidden populations of participants, including how these individuals perceive and access resources to support their STEM learning.

This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Elysa Corin
resource project Media and Technology
This award takes an innovative approach to an ongoing, pervasive, and persistent societal issue: women are still drastically underrepresented in computing careers. This project targets middle school-aged girls because it is a time when many of them lose interest and confidence in pursuing technical education and computing careers. This project will design, develop, and deploy a one-week experience focused on middle school girls that targets this issue with a novel combination of teaching techniques and technology. The project will use wearable computing devices to support girls' social interactions as they learn computing and solve technical challenges together. The goals of the project are to raise interest, perceived competence, and involvement in the computational ability of girls. Additionally, the project aims to increase a sense of computational community for girls that makes pursuing computational skills more relevant to their identities and lives, and that helps continued participation in computing. The project will deploy a one-week experience four times per year with a socioeconomically diverse range of campers. The project will also develop a 'program in a box' kit that can be broadly used by others wishing to deliver a similar experience for girls.

The planned research will determine if a one-week experience that uses social wearable construction in the context of live-action role play can use the mediating process of computational community formation to positively impact middle school girls' engagement with and interest in computation. Computational community is defined as girls engaging together in the process of learning computation, trading resources and knowledge, and supporting growth. Research participants will include 100 6th to 9th-grade girls. At least 75% of the participants will be either low income, first-generation college-bound, or underrepresented in higher education. Students will be recruited through the longstanding partnerships with title one schools in the Salinas Valley, the Educational Partnership Center, and in the Pajaro Valley Unified School district, where 82% of the students are Hispanic/Latinx, 42% are English Learners, and 73% are eligible for free or reduced lunch. The research questions are: 1) Does the proposed experience increase girls' self-reported competence, self-efficacy, and interest in computational skills and careers? and 2) Will the proposed experience lead to activity-based evidence of learning and integration of computational skills at the group social level? The project will use a mixed-methods, design-based research approach which is an iterative design process to rapidly collect and analyze data, and regularly discuss the implications for practice with the design team. Data will be collected using observations, interviews, focus groups, surveys, and staff logs. Quantitative data will be analyzed using frequencies, means, and measures of dispersion will be applied to survey data from both time points. Pearson correlation coefficients will be used to describe the bivariate relationship between continuous factors. ANOVAs will assess whether there are significant differences in continuous measures across groups. Qualitative data will be analyzed using a constant comparison method.

This Innovations in Development award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Katherine Isbister
resource project Professional Development, Conferences, and Networks
The National Science Teachers Association will convene a conference that will bring together STEM researchers and practitioners to review the growing connected science learning movement. A connected science learning environment has been described as a robust science ecology containing a wide variety of programs, across a range of institutions and places, allowing youth different and multiple ways to engage with STEM. Such environments can include small partnerships, such as a science museum and K-12 schools, or a large, community-wide network of a variety of organizations such as K-12 schools, museums, universities, government agencies, and community organizations. The conference will bring together over forty participants, who will meet in a series of several online meetings. The conference will result in a series of papers, articles in the online Connected Science Learning journal and other publications, a series of webinars and online forums where participants can engage with themes identified in the conference, and conference presentations at the annual meetings of organizations including the National Science Teachers Association, the Association of Science-Technology Centers, and others. This award is funded by the Advanced Informal STEM Learning program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

The conference will: (1) document the research foundation that supports and demonstrates the impact and value of high-quality connected science learning experiences; (2) identify areas for which future research is recommended; and (3) provide effective, practitioner-focused resources that advance connected STEM learning. The conference will include participants that represent a wide range of researchers and practitioners in informal and formal STEM education, as well as representing gender, racial/ethnic and geographical diversity. The results and products of the conference will be instrumental in developing the understanding and appreciation for connecting STEM learning and ultimately improving connected STEM learning for K-12 youth. The importance of emphasizing diversity, equity, and accessibility will be strongly represented in the key evidence identified through the conference and will be reflected in the resources that will be disseminated to a broader audience.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Beth Murphy
resource project Public Programs
Well-designed out-of-school time experiences can provide youth with rich opportunities to learn. However, to design effective out-of-school time experiences, it is critical to have a research basis that clarifies the features of programs that support increased youth engagement that then leads to better outcomes for youth. This project explores the features of programming that integrates sports, mathematics and science concepts, and growth mindset for 4th through 8th grade aged Latinx and African American youth. To accomplish this, the investigators refine curricular resources for out-of-school time programs and develop a model for professional learning experiences for informal educators and facilitators to support their implementation of integrated sports and STEM programming. To identify critical features of the programming, the researchers explore the ways that the program activities are implemented in two different contexts as well as the impact of the programming on youth participants' mindset, understanding of science and mathematics concepts, STEM interests, and self-perceived science and mathematics abilities. Additionally, researchers will explore the ways that the sports-themed programming supports (or could better support) girls' engagement.

The project builds on the University of Arizona researchers' existing partnerships with Major League Baseball (MLB) and Boys/Girls Club programs and an existing school-based MLB program for schools to (a) expand and refine Science of Baseball activities to enhance engagement among girls and incorporate growth mindset experiences that focus on the value of effort, determination, and learning from mistakes in both athletics and STEM; (b) study the enactment and outcomes of the program with 4th-8th grade aged youth in the two distinct informal learning settings; and (c) develop and refine a model for professional learning that includes in-person and on-line components for training informal STEM learning facilitators. The work will focus on two study contexts: afterschool programs of Boys and Girls Clubs in AZ, CA, and MO and summer programs of MLB in CA and MO. Participants will include 300 youth and up to 28 informal STEM learning facilitators split across the two contexts. Design-Based Implementation Research (DBIR) will be used to a) iteratively refine the activities and professional development model, and b) study the enactment and outcomes of the program. Research questions focus on outcomes for youth participants (i.e., impact on growth mindset, STEM dispositions, and understanding of science/math concepts), and the elements of effective professional development for informal STEM educators. Outcomes of the project include empirical evidence of what works and what doesn't work in the design, implementation, and professional development for STEM learning programs that integrate sports and growth mindset principles. In addition, outcomes of the project will advance knowledge of how different out-of-school program structures with similar sports-focused STEM programming can similarly (or differentially) support youth learning.

This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Ricardo Valerdi Erin Turner
resource project Exhibitions
National priorities recommend the U.S. fortify a culture of innovation by encouraging broader participation in invention and STEM. The Game Changers is an Innovations in Development exhibition project with embedded research that advances knowledge about how museum exhibits can activate STEM-related inventive identities among the public. The project is a collaboration between the Smithsonian's Lemelson Center for the Study of Invention and Innovation at the National Museum of American History (NMAH-LC), educational researchers, an exhibition design firm, and community based organizations. While the Game Changers exhibition theme of inventiveness in sports provides an initial spark for broad audience interest and engagement, its ultimate intent is to foster and enhance inventive identity among diverse audiences, particularly girls and young women ages 10-17, African American youth ages 10-17, and people of all ages with disabilities. Visitors will be met by a brief introductory display to launch their journey from passive learner to active inventor. A diverse array of athletes and inventors provide relevant motivational exemplars and ask visitors "How will YOU Change the Game?" Examples of invention challenges include, applying the principles of physics and materials science to aid in designing a safer helmet and exploring computational fluid dynamics to design a faster swimsuit. Throughout the exhibition experience, visitors will draw on an array of STEM skills and knowledge essential to sports, including physiology, kinesiology, and biomechanical engineering, physics, biomimicry, robotics, computer science, data analysis, and virtual and augmented reality. Throughout the project, the team will work with priority audiences, starting with front-end research and evaluation; progressing iteratively through stages of formative research, design, and evaluation; and conducting summative evaluation to ensure that the STEM-based content and design strategies are impacting inventive identity and meeting audiences' interests and needs. In coordination with the exhibition development and evaluation teams, educational researchers will iteratively explore and develop a model for innovative identity development in informal learning environments.

Educational psychologists from Old Dominion University and Temple University will collaborate closely with the NMAH-LC team, exhibition design-fabrication firm Roto, and evaluators from Randi Korn & Associates to adapt a theoretical model of identity from a formal education setting to an informal learning context. In the model, identity is conceptualized as a complex dynamic system, with interdependent internal and external elements (ontological/epistemological beliefs; self-perceptions; purpose and goals; perceived action possibilities) and reciprocal influences in a process of continuous emergence. Using design based research and a previously developed coding manual, the team will iteratively apply, test, and further advance the inventive identity development model, a set of inventive identity indicators for future research and development, and a list of exhibition design techniques for activating inventive, STEM-based identity development in informal learning environments. The research team will prioritize diverse audiences for iterative cycles and focus groups, including participants from the Girl Scouts of the Nation's Capital, Smithsonian Accessibility Program, Smithsonian's Anacostia Community Museum, and YMCA of Washington, DC. The exhibition's research, evaluation, and design outcomes will be disseminated widely across the AISL field and through project collaborators.

This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Monica Smith Jeffrey Brodie