Skip to main content

Community Repository Search Results

resource research K-12 Programs
We used a youth focused wild berry monitoring program that spanned urban and rural Alaska to test this method across diverse age levels and learning settings.
DATE:
TEAM MEMBERS: Katie Spellman Douglas Cost Christine Villano
resource research Citizen Science Programs
Plants with persistent fleshy fruits that last throughout fall and into winter and spring are an important source of nutrition for animals and people in boreal, subarctic, and arctic regions, but little information on fruit retention or loss is available for these regions. We evaluated fruit loss for four species across Alaska using data from our Winterberry community science network.
DATE:
TEAM MEMBERS: Christa Mulder Katie Spellman Jasmine Shaw
resource evaluation Afterschool Programs
The Arctic Harvest-Public Participation in Scientific Research (which encompasses the Winterberry Citizen Science program), a four-year citizen science project looking at the effect of climate change on berry availability to consumers has made measurable progress advancing our understanding of key performance indicators of highly effective citizen science programs.
DATE:
TEAM MEMBERS: Angela Larson Kelly Kealy Makaela Dickerson
resource project Public Programs
American Indian and Alaska Native communities continue to disproportionately face significant environmental challenges and concerns as a predominately place-based people whose health, culture, community, and livelihood are often directly linked to the state of their local environment. With increasing threats to Native lands and traditions, there is an urgent need to promote ecological sustainability awareness and opportunities among all stakeholders within and beyond the impacted areas. This is especially true among the dozens of tribes and over 50,000 members of the Coast Salish Nations in the Pacific Northwest United States. The youth within these communities are particularly vulnerable. This Innovations in Development project endeavors to address this serious concern by implementing a multidimensional, multigenerational model aimed at intersecting traditional ecological knowledge with contemporary knowledge to promote: (a) environmental sustainability awareness, (b) increased STEM knowledge and skills across various scientific domains, and (c) STEM fields and workforce opportunities within Coast Salish communities. Building on results from a prior pilot study, the project will be grounded on eight guiding principles. These principles will be reflected in all aspects of the project including an innovative, culturally responsive toolkit, curriculum, museum exhibit and programming, workshops, and a newly established community of practice. If successful, this project could provide new insights on effective mechanisms for not only promoting STEM knowledge and skills within informal contexts among Coast Salish communities but also awareness and social change around issues of environmental sustainability in the Pacific Northwest.

Over a five-year period, the project will build upon an extant curriculum and findings codified in a pilot study. Each aspect of the pilot work will be refined to ensure that the model established in this Innovations and Development project is coherent, comprehensive, and replicable. Workshops and internships will prepare up to 200 Coast Salish Nation informal community educators to implement the model within their communities. Over 2,500 Coast Salish Nation and Swinomish youth, adults, educators, and elders are expected to be directly impacted by the workshops, internships, curriculum and online toolkit. Another 300 learners of diverse ages are expected to benefit from portable teaching collections developed by the project. Through a partnership with the Washington State Burke Natural History Museum, an exhibit and museum programming based on the model will be developed and accessible in the Museum, potentially reaching another 35,000 people each year. The project evaluation will assess the extent to which the following expected outcomes are achieved: (a) increased awareness and understanding of Indigenous environmental sustainability challenges; (b) increased skills in developing and implementing education programs through an Indigenous lens; (c) increased interest in and awareness of the environmental sciences and other STEM disciplines and fields; and (d) sustainable relationships among the Coast Salish Nations. A process evaluation will be conducted to formatively monitor and assess the work. A cross cultural team, including a recognized Coast Salish Indigenous evaluator, will lead the summative evaluation. The project team is experienced and led by representatives from the Swinomish Indian Tribal Community, Oregon State University, Garden Raised Bounty, the Center for Lifelong STEM Learning, the Urban Indian Research Institute, Feed Seven Generations, and the Burke Museum of Natural History and Culture.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Jamie Donatuto Diana Rohlman Elise Krohn Valerie Segrest Rosalina James
resource research Public Programs
Educational approaches that provide meaningful, relevant opportunities for place-based learning have been shown to be effective models for engaging indigenous students in science. The Laulima A ‘Ike Pono (LAIP) collaboration was developed to create a place-based inclusive learning environment for engaging local community members, especially Native Hawaiians and Pacific Islanders, in scientific research at a historically significant ancient Hawaiian fishpond. The LAIP internship focused on problem-solving activities that were culturally relevant to provide a holistic STEM research experience
DATE:
TEAM MEMBERS: Judith D. Lemus
resource project Public Programs
The Lost Ladybug Project (LLP) is a Cornell University citizen science project that connects science to education by using ladybugs to teach non-scientists concepts of biodiversity, invasive species, and conservation. The project has successfully engaged thousands of children (ages 5-11) in collecting field data on ladybugs and building a ladybug biology database that is useful to scientists. It has also reached 80,000 people over the Internet. The goal of the project is to promote lifelong appreciation of biodiversity and science, and provide scientists with data on the changing distribution and abundance of ladybug species across the country. The current project is broadening the Lost Ladybug Project's reach geographically, culturally, demographically, and contextually by creating new tools and materials for the website, and forging new connections with (1) youth groups, (2) science centers, community centers, botanical gardens, nature centers, and organic farms, (3) adults, (4) Native Americans, and (5) Spanish-speakers. The expanded project could potentially involve tens of thousands of new individuals in ladybug monitoring research. An evaluation study is measuring the impacts of the expansion on new participants' knowledge, skills, attitudes, interests, and behavior. The Lost Ladybug Project has been important in advancing scientific discovery and building scientific knowledge. Data collected by the project's volunteers have improved scientists' understanding of (1) ladybug species presence/absence, (2) shifts in ladybug species composition, (3) shifts in ladybug species ranges, and (4) change in ladybug body size and spot number. Evaluation data show that the project has a broad audience reach and is achieving its learning goals for adults and children. Broadening the project's reach will further increase the project's importance to ecology, conservation biology and biodiversity research, as well as education research.
DATE: -
TEAM MEMBERS: John Losey Louis Hesler Kelley Tilmon Jessica Sickler Leslie Allee