Skip to main content

Community Repository Search Results

resource research Public Programs
Researchers and practitioners have identified numerous outcomes of place-based environmental action (PBEA) programs at both individual and community levels (e.g., promoting positive youth development, fostering science identity, building social capital, and contributing to environmental quality improvement). In many cases, the primary audience of PBEA programs are youth, with less attention given to lifelong learners or intergenerational (e.g., youth and adult) partnerships. However, there is a need for PBEA programs for lifelong learners as local conservation decisions in the United States
DATE:
TEAM MEMBERS: Laura Cisneros Jonathan Simmons Todd Campbell Nicole Freidenfelds Chester Arnold Cary Chadwick David Dickson David Moss Laura Rodriguez John Volin
resource research Public Programs
This poster was presented at the 2021 NSF AISL Awardee Meeting. The Rural Activation and Innovation Network (RAIN) project aims to engage, support and better understand rural communities in: Changing perceptions of the importance of STEM Learning Leveraging of local STEM resources and expertise with Rural Innovation Councils (RICs) Strategic Planning embedding asset maps, gap analysis, budget, media, and communication.
DATE:
TEAM MEMBERS: Jeremy Babendure
resource project Public Programs
Communities with the highest risk of climate change impacts may also be least able to respond and adapt to climate change, which highlights a specific need for inclusive Science, Technology, Engineering, and Mathematics (STEM) strategies. This Pilot and Feasibility project builds on the success of US Cooperative Extension Service programs that empower volunteers to conduct outreach in their own communities. It focuses on climate change, and seeks to co-design an informal STEM climate science curriculum, called Climate Stewards, in collaboration with community members from groups often underrepresented in STEM, including indigenous and Latinx communities, as well as rural women. The project is designed to strengthen community awareness as well as prioritize community voices in climate change conversations. The knowledge and skills obtained by Climate Stewards and their communities will allow for more involvement in decisions related to climate adaptation and mitigation in their communities and beyond. After establishing a proof of concept, the project seeks to expand this work to more rural and urban communities, other communities of color, and additional socioeconomically disadvantaged communities.

Grounded in the theory of diffusion of innovation as a means for volunteers to communicate information to members of a social system, this project seeks co-create a retooled Climate Stewards curriculum using inclusive and adaptive strategies. Community collaboration and involvement through new and existing partnerships, focus groups, and meetings will determine what each community needs. During the program design phase, community members can share their concerns regarding climate change as well as the unique characteristics and cultural perspectives that should be addressed. The collaboration between extension and education leverage resources that are important for developing a robust implementation and evaluation process. This project is expected to have a significant influence on local and national programs that are looking to incorporate climate change topics into their programming and/or broaden their reach to underrepresented communities. The hypotheses tested in this project describe how inclusion-based approaches may influence competencies in STEM topics and their impact on communities, specifically willingness to take action. Hypothesis 1: STEM competencies in climate issues increase with interactive and peer learning approaches. Hypothesis 2: Community participation in the co-creation of knowledge about climate change, by integrating their values and objectives into the climate change education program, increases people's motivation to become engaged in climate change adaptation and mitigation strategies.

This Pilot and Feasibility project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Patricia Townsend Roslynn McCann Melissa Kreye Arthur Nash
resource research Media and Technology
This short (approximately 2-3 hours), self-paced non-credit learning module is designed for those new to conducting research in communities impacted by energy development. You will learn about the concept of “research fatigue” and become more prepared for fieldwork by learning what to expect when you visit energy-impacted communities. Access is free for students, researchers and those living in or serving communities impacted by energy development. Participants who complete the online course can a digital badge called Understanding Research Fatigue. Earners of this certification will
DATE:
TEAM MEMBERS: Suzi Taylor Julia Hobson Haggerty Kristin Smith Ruchie Pathak
resource project Public Programs
This Innovations in Development project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Specifically, this project connects Native Hawaiian youth ages 12-17 and their family members to STEM by channeling their cultural relationship with ʻāina, the sustaining elements of the natural world including the land, sea, and air. This project seeks to: broaden participation of Native Hawaiian youth who have been historically underrepresented in STEM; actively uphold Native Hawaiian ways of knowing and traditional knowledge; articulate the science rooted in cultural wisdom; and bring STEM into the lives of participants as they connect to the ʻāina. In partnership with six ʻāina-based community organizations across Hawaiʻi, this project will develop, implement, and study ʻāina-centered environmental education activities that explore solutions to local environmental problems. For example, in one module youth and their families will explore of a section of a nearby stream; identify and discuss the native, non-native, and invasive species; remove invasive species from a small section of the stream and make observations leading to discussions of unintended consequences and systemic impacts; ultimately, learners will meet at additional local waterways to engage in similar explorations and discussions, transferring their knowledge to understanding the impacts of construction on local streams and coral reefs. To this effort, the community-based organizations bring their expertise in preserving Hawaiian culture and sustainable island lifestyle, including rural and urban systems such as farming and irrigation traditions and the restoration of cultural sites. University of Hawai’i faculty and staff bring expertise in Environmental Science, Biology, Hawaiian Studies and Problem-Based Learning Curriculum Development. This project further supports organizational learning and sharing among the six community-based organizations. Grounded in Hawaiian ʻAʻo, where learning and teaching are the same interaction, community-based organizations will create a Community of Practice that will co-learn Problem-Based Learning pedagogy; co-learn and engage in research and evaluation methods; and share experiential and traditional knowledge to co-develop the ʻāina-based environmental education activities.

This project is uniquely situated to study the impact of community-led culturally relevant pedagogy on Hawaiian learners’ interests and connections to environmental science, and to understand ʻāina-based learning through empirical research. Research methods draw on Community-Based Participatory Research and Indigenous Research Methods to develop a collaborative research design process incorporated into the project’s key components. Community members, researchers, and evaluators will work together to examine the following research questions: 1) How does environmental Problem-Based Learning situate within ʻāina-based informal contexts?; 2) What are the environmental education learning impacts of ʻāina-based activities on youth and family participants?; and 3) How does the ʻāina-centered Problem-Based Learning approach to informal STEM education support STEM knowledge, interest and awareness? The evaluation will employ a mixed-methods participatory design to explore program efficacy, fidelity, and implementation more broadly across community-based sites, as well as program sustainability within each community-based site. Anticipated project outcomes are a 15-week organizational learning and sharing program with six ʻāina-based community organizations and 72 staff; the design and implementation of 18 activities to reach 360 youth and at least one of their family members; and the launch of an ʻāina-based STEM Community of Practice. The project’s research and development process for ʻāina-centered environmental education activities will be shared broadly and provide a useful example for other organizations locally and nationally working in informal settings with Native or Indigenous populations.
DATE: -
TEAM MEMBERS: Lui Hokoana Hokulani Holt-Padilla Jaymee Nanasi Davis
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The goal of this pilot and feasibility study is to increase participation in informal STEM learning in rural Idaho through Stories of Fire, a program based on personal narratives of wildland fire. Idaho is a rural state, with an average population of just 19 people per square mile, the fourth lowest population density in the United States. The state is experiencing increasingly severe wildfire, and effective responses to such environmental change require a better understanding of the underlying science. Contextualizing science learning, making connections between everyday lives and a sense of place can engage learners and bring about a better understanding of wildfire. This project will bring together a science communicator, a narratologist, a fire ecologist, and a specialist on emotions and public lands. They will work collaboratively with informal educators based in rural areas of Idaho underrepresented in STEM fields. Rural areas are rich in knowledge based on years of cumulative observations, cultural beliefs, and practices shared through community networks. This project builds on these rural assets while addressing the challenges rural populations face. The project addresses broadening participation in STEM through narrative practices that encourage more diverse ways of knowing, being, and representing science.

This research study will explore: 1) what mechanisms of narrative (storytelling) most effectively integrate individuals? personal experiences and accurate STEM content in fire science communication, and 2) what audience-centered approaches best facilitate narrative approaches to informal STEM learning. This project engages four levels of participants over four phases of research and programming: 1) The research team will interview and analyze the narratives of 40 Frontliners (e.g., wildland firefighters and evacuees) from the inland Northwest region with first-hand experience with wildfire. 2) They will conduct a narrative workshop to train 20 informal STEM Educators from across the state on audience-centered approaches that facilitate participant storytelling about fire. 3) Educators will pilot their own narrative-based informal science learning programs with program participants in their rural home communities across the state, 4) A professional podcaster will create two podcasts modeled on our research findings for public audiences reached through media.

This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Teresa Cohn Leda Kobziar Jennifer Ladino Erin James
resource project Public Programs
The RASOR project is designed to increase engagement of students from rural Alaska communities in biomedical/STEM careers. Rural Alaskan communities are home to students of intersecting identities underrepresented in biomedical science, including Alaska Native, low-income, first generation college, and rural. Geographic isolation defines these communities and can limit the exposure of students to scientifically-minded peers, professional role models, and science career pathways. However these students also have a particularly strong environmental connection through subsistence and recreational activities, which makes the one-health approach to bio-medicine an intuitive and effective route for introducing scientific research and STEM content. In RASOR, we will implement place-based mentored research projects with students in rural Alaskan communities at the high school level, when most students are beginning to seriously consider career paths. The biomedical one-health approach will build connections between student experiences of village life in rural Alaska and biomedical research. Engaging undergraduate students in research has proved one of the most successful means of increasing the persistence of minority students in science (Kuh 2008). Furthermore, RASOR will integrate high school students into community-based participatory research (Israel et al. 2005). This approach is designed to demonstrate the practicality of scientific research, that science has the ability to support community and cultural priorities and to provide career pathways for individual community members. The one-health approach will provide continuity with BLaST, an NIH-funded BUILD program that provides undergraduate biomedical students with guidance and support. RASOR will work closely with BLaST, implementing among younger (pre-BLaST) students approaches that have been successful for retaining rural Alaska students along STEM pathways and tracking of post-RASOR students. Alaska Native and rural Alaska students are a unique and diverse population underrepresented in biomedical science and STEM fields.
DATE: -
TEAM MEMBERS: Janice Straley Ellen Chenowith
resource project Public Programs
This collaborative project will facilitate rural community education on climate impacts. The Carnegie Natural History Museum and the University of Pittsburgh will work together to form a network of interested community members in Mercer County and Powdermill Nature Reserve in western Pennsylvania to explore the impacts of climate and how its effect could be mitigated or accommodated. The project is has three related ideas: (1) museums hold valuable resources for understanding environmental change, (2) museums are not serving rural audiences well, and (3) complex socio-scientific environmental topics are deeply connected to social decision making in rural communities. This project will bring an inclusive approach to the discussion of socio-scientific issues in rural Western PA, through building relationships between local public audiences, STEM professionals, and informal learning specialists, creating opportunities for co-development of resources and building organizational capacity. The overarching goals of the project are to explore how museums can better serve rural stakeholders and increase the capacity for science-based conversations about human-caused climate impacts.

This project involves a cross-disciplinary team with Carnegie Museum of Natural History providing expertise in interpretation and ecological science, the University of Pittsburgh Center for Learning in Out of School Environments (UPCLOSE) providing expertise in learning research, and rural Hubs centered at Powdermill Nature Reserve (PNR) and the Mercer County Conservation District providing expertise in environmental education, conservation, and engagement with rural communities. The Hubs will coordinate professional development workshops, collaborative design sessions, and community gatherings to bring local stakeholders together to examine and adapt existing resources, including environmental science data and climate education tools, to local issues. These activities will be structured through a Research Practice Partnership. Each will have its own unique mix of geography, demographics, resources, and challenges.

The Research questions are: 1. How can the project effectively support the creation of socially safe spaces for rural Western PA communities to have science-based discussions around climate impacts? 2. How does work with rural partners influence the development of the museum's Center for Climate Studies and its mission to offer programs designed to support public engagement?

3. In what ways have museums been able to support learning about climate topics in rural communities? Data will be gathered from interviews and case studies. There will be two longitudinal studies of local network change and museum change. A survey will also be done to assess the impact of the project on the public. Protocols will be developed in collaboration with the Hubs.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Lauren Giarratani Nicole Heller Kevin Crowley
resource project Public Programs
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.

The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Katie Spellman Elena Sparrow Christa Mulder Deb Jones
resource project Public Programs
Cities and communities in the U.S. and around the world are entering a new era of transformational change, in which their inhabitants and the surrounding built and natural environments are increasingly connected by smart technologies, leading to new opportunities for innovation, improved services, and enhanced quality of life. The Smart and Connected Communities (SCC) program supports strongly interdisciplinary, integrative research and research capacity-building activities that will improve understanding of smart and connected communities and lead to discoveries that enable sustainable change to enhance community functioning. This project is a Research Coordination Network (RCN) that focuses on achieving SCC for medium/small size, remote, and rural communities through a polycentric (multiple centers) integrated policy, design, and technology approach. The communities served by the RCN have higher barriers to information, resources, and services than larger urban communities. To reduce this gap, the PIs propose to develop need-based R&D pipelines to select solutions with the highest potential impacts to the communities. Instead of trying to connect under-connected communities to nearby large cities, this proposal aims to develop economic opportunities within the communities themselves. This topic aligns well with the vision of the SCC program, and the proposed RCN consists of a diverse group of researchers, communities, industry, government, and non-profit partners.

This award will support the development of an RCN within the Commonwealth of Virginia which will coordinate multiple partners in developing innovations utilizing smart and connected technologies. The goal of the research coordination network is to enable researchers and citizens to collaborate on research supporting enhanced quality of life for medium, small, and rural communities which frequently lack the communication and other infrastructure available in cities. The research coordination network will be led by the University of Virginia. There are 14 partner organizations including six research center partners in transportation, environment, architecture and urban planning, and engineering and technology; two State and Industry partners (Virginia Municipal League and Virginia Center for Innovative Technology); four community partners representing health services (UVA Center for Telemedicine), small and remote communities (Weldon Cooper Center), neighborhood communities (Charlottesville Neighborhood Development), and urban communities (Thriving Cities); and two national partners which support high speed networking (US-Ignite) and city-university hubs (MetroLab). Examples of research coordination include telemedicine services, transportation services, and user-centric and community-centric utilization and deployment of sensor technologies.
DATE: -
TEAM MEMBERS: Ila Berman T. Donna Chen Karen Rheuban Qian Cai
resource project Public Programs
Community education with regard to science comes in many forms and is usually designed to address issues within that community. In this proposal, land use is the focus. This is a general topic and applicable in nearly all locations within communities and in the State. In this case, the topic is used to educate adults and high school students providing each with unique identities. Using satellite-enabled tools, the topology of an area can be mapped in detail and assessed for use thus enabling science education for both adults and high school students. The studies will involve intergenerational learning which is an area needing additional study. Also, the proposers are going to broaden the scope so that it impacts several different areas in the State of Connecticut. This is important because in doing so it will include the diversity of cultures within the State and the education results will reflect this diversity. As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This proposed effort aims to promote lifelong STEM learning through a focus on conservation, geospatial technology and community engagement. The goals are to: (1) develop particular STEM knowledge and skills, and foster STEM identity authoring/learning in two disparate groups of lifelong learners, and (2) gain a deeper understanding of the ways that this learning occurs through research and evaluation. The project will develop an educational program that focuses on conservation science and recent advances in web-enabled geospatial technologies (geographic information systems, remote sensing, and global positioning systems) that, for the first time, make these technologies accessible and attainable for the public. The focus will be on urban and rural areas with underrepresented populations of STEM learners. Two groups of lifelong learners will be targeted: adult volunteers involved with community land conservation issues, and high school-aged adolescents enabling the project to investigate the processes and impacts of intergenerational learning.
DATE: -
TEAM MEMBERS: John Volin David Moss David Campbell Chester Arnold Cary Chadwick
resource project Public Programs
A frequently missing element in environmental education programs is a concerted effort by communities, organizations, government, and academic stakeholders to build meaningful partnerships and cultivate informal science learning opportunities via public participation in environmental research. This collaborative approach not only makes scientific information more readily available, it also engages community members in the processes of scientific inquiry, synthesis, data interpretation, and the translation of results into action. This project will build a co-created citizen science program coupled with a peer education model and an extensive communication of results to increase environmental STEM literacy. The project targets historically underrepresented populations that are likely to be disproportionately impacted by climate, water scarcity, and food security. Based upon past needs assessments in the targeted communities, gardens irrigated by harvested rainwater will become hubs for environmental STEM education and research. For this project, gardens irrigated by harvested rainwater will serve as hubs for environmental literacy education efforts. Researchers from the University of Arizona and Sonora Environmental Research Institute will work alongside community environmental health workers, who will then train families residing in environmentally compromised areas (urban and rural) on how to monitor their soil, plant, and harvested water quality. The project aims to: (1) co-produce environmental monitoring, exposure, and risk data in a form that will be directly relevant to the participants' lives, (2) increase the community's involvement in environmental decision-making, and (3) improve environmental STEM literacy and learning in underserved rural and urban communities. The project will investigate and gather extensive quantitative and quantitative data to understand how: (1) participation in a co-created citizen science project enhances a participant's overall environmental STEM literacy; (2) a peer-education model coupled with a co-created citizen science program affects participation of historically underrepresented groups in citizen science; and (3) the environmental monitoring approach influences the participant's environmental health learning outcomes and understanding of the scientific method. In parallel, this project will evaluate the role of local-based knowledge mediators and different mechanisms to communicate results. These findings will advance the fields of informal science education, environmental science, and risk communication. Concomitantly, the project will facilitate the co-generation of a robust dataset that will not only inform guidelines and recommendations for harvested rainwater use, it will build capacity in underserved communities and inform the safe and sustainable production of food sources. This research effort is especially critical for populations in arid and semiarid environments, which account for ~40% of the global land area and are inhabited by one-third of the world's population. This program will be available in English and Spanish and can truly democratize environmental STEM research and policy. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Monica Ramirez-Andreotta Aminata Kilungo Leif Abrell Jean McLain Robert Root