Skip to main content

Community Repository Search Results

resource research Public Programs
The maker movement has evoked interest for its role in breaking down barriers to STEM learning. However, few empirical studies document how youth are supported over time, in STEM-rich making projects or their outcomes. This longitudinal critical ethnographic study traces the development of 41 youth maker projects in two community-centered making programs. Building a conceptual argument for an equity-oriented culture of making, the authors discuss the ways in which making with and in community opened opportunities for youth to project their communities’ rich culture knowledge and wisdom onto
DATE:
resource project Public Programs
While the term 'failure' brings to mind negative associations, there is a current focus on failure as a driver of innovation and development in many professional fields. It is also emerging from prior research that for STEM professionals and educators, failure plays an important role in designing and making to increase learning, persistence and other noncognitive skills such as self-efficacy and independence. By investigating how youth and educators attend to moments of failure, how they interpret what this means, and how they respond, we will be better able to understand the dynamics of each part of the experience. The research team will be working with youth from urban, suburban and rural settings, students from Title I schools or who qualify for free/reduced-price lunches, those from racial and ethnic minority groups, as well as students who are learning English as a second language. These youth are from groups traditionally underrepresented in STEM and in making, and research indicates they are more likely to experience negative outcomes when they experience failure.

The intellectual merit of this project centers on establishing a baseline understanding of how failure in making is triggered and experienced by youth, what role educators play in the process, and what can be done to increase persistence and learning, rather than failure being an end-state. The research team will investigate these issues through the use of qualitative and quantitative research methods. In particular, the team will design and evaluate the effectiveness of interventions on increasing the abilities of youth and educators in noticing and responding to failures and increasing positive (e.g., resilience) outcomes. Research sites are selected because they will allow collection of data on youth from a wide range of backgrounds. The research team will also work to test and revise their hypothesized model of the influence of factors on persistence through failures in making. This project is a part of NSF's Maker Dear Colleague Letter (DCL) portfolio (NSF 15-086), a collaborative investment of Directorates for Computer & Information Science & Engineering (CISE), Education and Human Resources (EHR) and Engineering (ENG).
DATE: -
TEAM MEMBERS: Adam Maltese Amber Simpson Alice Anderson
resource project Public Programs
This project by California State University San Marcos and their collaborators will expand and continue to innovate on a pilot Mobile Making program with the goal of developing a sustainable, regional model for serving underserved, middle-school aged youth in twelve after-school programs in the San Diego region. Evaluation of the current Mobile Making program has documented positive impacts on participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life, and led to a model for engaging underserved youth in Making. The work will focus on implementing the program model sustainably at greater capacity by increasing the number of undergraduate activity leaders, after-school sites, and level of community engagement. The expanded Mobile Making program is expected to engage ~1800 middle school youth at 12 local school sites, with activities facilitated by ~1020 undergraduate CSU-SM STEM majors. The sites are in ethnically diverse and economically disadvantaged neighborhoods, with as many as 90% of students at some sites qualifying for free or reduced price lunch. The undergraduate facilitators are drawn from CSU-SM's diverse student body, which includes 44% underrepresented minorities. Outcomes are expected to include increases in the youth participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life. Positive impacts on the undergraduate facilitators will include broadened technical skills, increased leadership and 21st century skills, and increased lifelong interest in STEM outreach/informal science education. The program is designed to achieve sustainability through innovative means such as involving undergraduate facilitators via Community Service Learning (rather than paid positions), and increased community engagement via development and support of a community of practice including local after-school providers, teachers, Makers, and University members. Evaluation of the program outcomes and lessons learned are expected to result in a comprehensive model for a sustainable, university-based after-school Making program with regional impact in underserved communities. Dissemination to other regions will be leveraged via CSU-SM's membership in the California State University (CSU) system, yielding a potential statewide impact. The support of the CSU Chancellor's Office and input from a CSU implementation group will ensure the applicability of the model to other regional university settings, identify common structural barriers and solutions, and increase the probability of secondary implementations. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Edward Price Charles De Leone
resource project Public Programs
As part of an overall strategy to enhance learning within maker contexts in formal and informal environments, the Innovative Technology Experiences for Students and Teachers (ITEST) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models in Making poised to catalyze new approaches in STEM learning and innovation. Employing a novel design and development approach, this Early Concept Grant for Exploratory Research (EAGER) will test the feasibility of integrating Making concepts with real world micro-manufacturing engineering principles within the context of intense, multi-year team apprenticeship experiences for high school students. The apprenticeship model is particularly novel, as current Making research and experiences predominately take place in afterschool and summer programs for up to 25 youth. The proposed apprenticeships will require a two year commitment by a small cohort of Texas high school students, which will provide an opportunity to examine the feasibility and impact of the effort longitudinally. The cohort will learn to think critically, solve problems, and work together as a Making Production Team (MPT) in a customized makerspace in their high school, constructing engineering-based science kits for implementation in a local elementary school. Not only will the students enhance their content knowledge while developing design and development skills but the students will also receive stipends which will address two very practical needs for the targeted high need population - employment and workforce development. Few, if any, efforts currently serve the targeted population through the contextualization of Making within a supply chain management and micro-manufacturing framework that extends the Making experience by integrating the student designed products into elementary classrooms. As such, this project will contribute to essentially unexplored areas of Making research and development.

Six high school students from high poverty, underserved Texas communities along the Texas-Mexico border (colonias) will be selected for the Making Production Team (MPT). In Years 1 and 2, the students will meet regularly during the academic school year and over the summer with Texas A & M University undergraduates, graduate students, and the project team to learn key aspects of Making and manufacturing (i.e., ideation, prototyping, design, acquisition, personnel, and production) through hands-on making activities and direct instruction. Concurrently, a research study will be conducted to explore: (a) the actualization of the model in an underserved community, (b) the effectiveness of problem-based learning to train students in the model, and (c) STEM knowledge and self-concept. Data will be collected from multiple sources. An adapted version of the Academic Self-Description Questionnaire will be administered to the students to assess their STEM technical knowledge and skills as well as their self-concept in relation to STEM domains. Remote and in person interviews will be conducted with the students to track the evolution of the primary dependent variables, STEM learning and self-concept, over time. Program facilitators and partners will be interviewed to examine the feasibility of the making experience within the given context and for the targeted students. Finally, the students' diary reflections, products, and video recordings of their work sessions will also be examined. Time-series quantitative tests and in-depth qualitative methods will be used to analyze the data.
DATE: -
TEAM MEMBERS: Francis Quek Sharon Lynn Chu Malini Natarajarathinam Mathew Kuttolamadom
resource research Public Programs
This report summarizes findings from a research-practice partnership investigating STEM-rich making in afterschool programs serving young people from communities historically under-represented in STEM. The three-year study identified key dimensions related to (1) How STEM-Rich Making advances afterschool programmatic goals related to socio-emotional and intellectual growth for youth; (2) Key characteristics of programs that effectively engage youth historically marginalized in STEM fields; and (3) Staff development needs to support equity-oriented STEM-Rich Making programs.
DATE:
TEAM MEMBERS: Bronwyn Bevan Jean Ryoo Molly Shea Linda Kekelis Paul Pooler Emilyn Green Nicole Bulalacao Emily McLeod Jose Sandoval Miguel Hernandez
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. This project is exploring and identifying successful, cross-institutional approaches to using maker activities to engage members of communities of color (with a focus on family groups) in STEM activities.
DATE:
TEAM MEMBERS: Marjorie Bequette
resource project Media and Technology
The L.C. Bates Museum will provide 1,700 rural fourth grade students and their families museum-based STEAM (Science, Technology, Engineering, Art, and Mathematics) educational programming including integrated naturalist, astronomy, and art activities that explore Maine's environment and its solar and lunar interactions. The project will include a series of eight classroom programs, family field trips, TV programs, family and classroom self-guided educational materials, and exhibitions of project activities including student work. By bringing programs to schools and offering family activities and field trips, the museum will be able to engage an underserved, mostly low-income population that would otherwise not be able to visit the museum. The museum's programming will address teachers' needs for museum objects and interactive explorations that enhance student learning and new Common Core science curriculum objectives, while offering students engaging learning experiences and the opportunity to develop 21st century leadership skills.
DATE: -
TEAM MEMBERS: Deborah Staber