Skip to main content

Community Repository Search Results

resource project Exhibitions
A long history of research suggests that early informal STEM learning experiences such as block play, puzzles, visiting zoos and science museums can build a strong foundation for STEM learning and which leads to later STEM success. Yet, children from low-income and historically underserved communities have less access to these opportunities due to scarce resources and barriers to access such as transportation and cost. To address these challenges, this project will endeavor to infuse public urban spaces such as local parks, bus-stops, and grocery stores with playful and engaging informal STEM learning opportunities in low-income Latinx neighborhoods as a strategy for understanding how public spaces, when co-designed with community partners and informed by the science of learning, can foster rich, informal STEM learning experiences for young children in neighborhood places where families naturally spend time. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

Using techniques of Community-Based, Participatory Design Research, researchers will collaborate closely with community families and partners in Santa Ana, California to achieve three aims: 1) Co-design a series of outdoor Playful Learning Landscape (PLL) exhibit installations with community partners that reflect the goals, values, and cultural capital of the Latino community. 2) Explore how caregivers and their children experience PLL exhibit installations and examine the development and changes in: a) caregiver-child STEM conversation and interactions, and b) caregiver attitudes about the importance of informal STEM learning and their beliefs about their role in facilitating STEM learning. 3) Leverage existing data from county partners to examine the potential effects of having multiple PLL installations within a specific neighborhood on promoting STEM learning and development across an array of cognitive and socio-emotional outcomes in early-childhood. This project will advance current knowledge on informal STEM learning by demonstrating new ways to understand the cultural assets that Latinx families bring to learning contexts, showing how the unique assets and needs of a local community can be incorporated into public infrastructure, and documenting the STEM-related learning experiences and interactions that occur in these settings. Due to a partnership with the Orange County Children and Families Commission, which collects data on child learning and development on every child in the county, researchers will examine the longitudinal impacts of a cluster of playful STEM-learning exhibit installations in a single neighborhood on children's developmental outcomes compared to matched neighborhoods without access to these installations. By leveraging everyday routines to promote playful STEM learning and caregiver-child STEM-related interactions, this project will: 1) empower caregivers to build a STEM learning foundation for children during early childhood; and 2) serve as a model for how cities can be re-designed to enhance ubiquitous STEM learning across public spaces, with the cultural capital of local families and children at the center of urban design and revitalization.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Andres Bustamante Kathy Hirsh-Pasek June Ahn
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project aims to understand ways to empower Latinx families (adult caregivers) to feel confident in their ability to support their middle school-aged girls in science and engineering activities. The project involves seven weeks of family programming around rockets or urban farming, as well as separate conversation groups for adult family members and girls. The project is relevant for several reasons: females and Latinx individuals are both underrepresented in science, technology, engineering, and math (STEM) coursework and careers; girls tend to lose interest in STEM by middle school age; and adult family members may have an impact on their children's attitudes and interests. The project partners with school districts and nonprofit organizations in Arizona and California.

This multidisciplinary project's priority is broadening participation, with a focus on increasing Latina girls' science and engineering interests through Family Project-Based Learning Activities, Conversation Groups, and a cultivated Community of Learners. It is based on the frameworks of Social Cognitive Career Theory and Community Cultural Wealth. The project aims to empower families (adult caregivers) to feel confident in their ability to support their daughters in science and engineering activities, which is often low especially among Latinx parents. The project will develop and evaluate two out-of-school enrichment methods for aiding families in encouraging and supporting their daughters in science: Family Problem-Based Learning Activities, which focus on rockets and urban farming, and Conversation Groups, which provide information and discussion for separate groups of parents and girls. A series of pilot studies will be conducted with 80 families to iteratively evaluate and improve the materials and procedure prior to the main study with 180 families, featuring a factorial design with a control group.

The materials developed and research findings may inform similar projects, especially those for students from culturally and linguistically diverse backgrounds and projects seeking to enhance the role of families in learning. The hypothesis guiding the project is that the greatest gains will be produced with the synergistic combination of enrichment methods. Another component that can potentially have broad impact is working to create environments where Community Cultural Wealth is recognized and enhanced through interactions of different families, creating Communities of Learners. This can inform projects that recognize the importance of community and/or that seek to use culture as an asset. The proposed study will engage three geographically distributed universities and several community partners. It will also provide university students and community leaders opportunities for work on instructional design, implementation, and research. The team will disseminate their findings and methods through multiple avenues to reach researchers, parents, leaders, curators, and educators in informal and K-12 settings.

This Research in Service to Practice award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Katherine Short-Meyerson Peter Rillero Peter Meyerson Margarita Jimenez-Silva Christopher Edwards
resource project Public Programs
As new technologies continue to dominate the world, access to and participation in science, technology, engineering, mathematics (STEM), and computing has become a critical focus of education research, practice, and policy. This issue is exceptionally relevant for American Indians, who remain underrepresented as only 0.2% of the STEM workforce, even though they make up 2% of the U.S. population. In response to this need, this Faculty Early Career Development Program (CAREER) project takes a community-driven design approach, a collaborative design process in which Indigenous partners maintain sovereignty as designers, to collaboratively create three place-based storytelling experiences, stories told in historical and cultural places through location-based media. The place-based storytelling experiences will be digital installations at three culturally, politically, and historically significant sites in the local community where the public can engage with Indigenous science. The work is being done in partnership with the Northwestern Band of the Shoshone Nation (NWBSN).

The principal investigator and the NWBSN will investigate: (a) what are effective strategies and processes to conduct community-driven design with Indigenous partners?; (b) how does designing place-based storytelling experiences develop tribal members' design, technical, and computational skills?; (c) how does designing these experiences impact tribal members' scientific, technological, and cultural identities? The goals are to establish a process of community-driven design, build infrastructure to support this process, and understand how this methodological approach can result in culturally-appropriate ways to engage with science through technology. The principal investigator will work with the tribe to complete three intergenerational design cycles (a design cycle is made up of multiple design iterations). Each design cycle will result in one place-based storytelling experience. The goal is to include roughly 15 youth (ages 6-18), 10 Elders, and 10 other community members (i.e. members ages 18-50, likely parents) in each design cycle (35 tribal members total). Some designers are likely to participate in multiple design cycles. The tribe currently has 48 youth ages 6-18 and the project aims to engage at least 30 across all three design cycles. Over four years of designing three different experiences, the NWBSN aims to recruit at least 100 tribal members (just under 20% of the tribe) to make contributions (as designers, storytellers, or to provide cultural artifacts or design feedback).

This CAREER award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Breanne Litts
resource project Public Programs
The goal of the National Science Foundation?s Research Coordination Network (RCN) program is to advance a field or create new directions in research or education by supporting groups of investigators to communicate and coordinate their research, training and educational activities across disciplinary, organizational, geographic and international boundaries. This RCN will bring together scholars and practitioners working at the intersection of equity and interdisciplinary making in STEM education. Making is a culture that emphasizes interest-driven learning by doing within an informal, peer-led and creative social environment. Hundreds of maker spaces and maker-oriented classroom pedagogies have developed across the country. Maker spaces often include digital technologies such as computer design, 3-D printers, and laser cutters, but may also include traditional crafts or a variety of artist-driven creations. The driving purpose of the project is to collectively broaden STEM-focused maker participation in the United States through pursuing common research questions, sharing resources, and incubating emergent inquiry and knowledge across multiple working sites of practice. The network aims to build capacity for research and knowledge, building in consequential and far-reaching mechanisms to leverage combined efforts of a core group of scholars, practitioners, and an extended network of formal and informal education partners in urban and rural sites serving people from groups underrepresented in STEM. Maker learning spaces can be particularly fruitful spaces for STEM learning toward equity because they foster interest-driven, collective, and community-oriented learning in making for social and community change. The network will be led by a team of multi-institutional and multi-disciplinary researchers from different geographic regions of the United States and guided by a steering committee of prominent researchers and practitioners in making and equity will convene to facilitate network activities.

Equitable processes are rooted in a commitment to understand and build on the skills, practices, values, and knowledge of communities marginalized in STEM. The research network aims to fill in gaps in current understandings about making and equity, including the many ways different projects define equity and STEM in making. The project will survey the existing research terrain to develop a dynamic and cohesive understanding of making that connects to learners' STEM ideas, communities, and historical ways of making. Additionally, the network will collaboratively develop central research questions for network partners. The network will create a repository for ethical and promising practices in community-based research and aggregate data across sites, among other activities. The network will support collaboration across a multiplicity of making spaces, research institutions, and community organizations throughout the country to share data, methodologies, ways of connecting to local communities and approaches to robust integration of STEM skills and practices. Project impacts will include new research partnerships, a dissemination hub for research related to making and equity, professional development for researchers and practitioners, and leveraging collective research findings about making values and practices to improve approaches to STEM-rich making integration in informal learning environments. The project is funded by NSF's Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of settings. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Maria Olivares Eli Tucker-Raymond Edna Tan Jill Castek Cynthia Graville
resource project Public Programs
The RASOR project is designed to increase engagement of students from rural Alaska communities in biomedical/STEM careers. Rural Alaskan communities are home to students of intersecting identities underrepresented in biomedical science, including Alaska Native, low-income, first generation college, and rural. Geographic isolation defines these communities and can limit the exposure of students to scientifically-minded peers, professional role models, and science career pathways. However these students also have a particularly strong environmental connection through subsistence and recreational activities, which makes the one-health approach to bio-medicine an intuitive and effective route for introducing scientific research and STEM content. In RASOR, we will implement place-based mentored research projects with students in rural Alaskan communities at the high school level, when most students are beginning to seriously consider career paths. The biomedical one-health approach will build connections between student experiences of village life in rural Alaska and biomedical research. Engaging undergraduate students in research has proved one of the most successful means of increasing the persistence of minority students in science (Kuh 2008). Furthermore, RASOR will integrate high school students into community-based participatory research (Israel et al. 2005). This approach is designed to demonstrate the practicality of scientific research, that science has the ability to support community and cultural priorities and to provide career pathways for individual community members. The one-health approach will provide continuity with BLaST, an NIH-funded BUILD program that provides undergraduate biomedical students with guidance and support. RASOR will work closely with BLaST, implementing among younger (pre-BLaST) students approaches that have been successful for retaining rural Alaska students along STEM pathways and tracking of post-RASOR students. Alaska Native and rural Alaska students are a unique and diverse population underrepresented in biomedical science and STEM fields.
DATE: -
TEAM MEMBERS: Janice Straley Ellen Chenowith
resource project Public Programs
Exploratorium’s The Phenomenal Genome: Evolving Public Understanding of Genetics in the Post-Mendelian Era project addresses the increasing need to develop genomic literacy in the public at large. The explosion of genomics research over the past two decades has led to an increasingly complex picture of the determinants of human health and human phenotypes, and the applications of this research are now making their way into the clinic, the media, and the hands of consumers. The goal of this project is to create a model for increasing genomic literacy through Informal Science Education programming (ISE), creating a pathway for better decision making for the health of individuals and society at large. The Phenomenal Genome focuses on general science museum visitors and teachers of middle and high school students.

The core of the Exploratorium’s approach to science education is the creation of intriguing, provocative and investigable phenomena that are experienced directly and personally through exhibits, facilitated explorations, programs, and teacher professional development. Over two years, we will develop, test, and iterate inquiry-based professional development to help teachers develop understanding and integrate the principles of contemporary genomics and genetics into their classrooms. 120 middle and high school teachers will be served during this period, and many more beyond that, as the activities and workshops developed become a regular part of our teacher professional development programming. A learning scientist specializing in teacher learning will conduct research to determine which approaches and experiences are most effective for this context, and why.

In a parallel process, we will develop and test exhibits and experiences on the museum floor for museum visitors, using a similar iterative process of prototype testing with an embedded learning scientist to study visitor learning. We plan to define the approaches that work across audiences and contexts, as well as those that work best in particular contexts.

Through this work, we will develop new resources for teaching and learning contemporary genomics and genetics, and identify promising practices in communicating contemporary genomics and genetics in informal spaces across audiences. We will disseminate our findings via conferences, peer-reviewed articles, and workshops for the ISE community.
DATE: -
TEAM MEMBERS: Hilleary Osheroff Kristina Yu
resource project Exhibitions
Escape rooms are an engaging and increasingly popular game format in which a team of players is “locked” in a room and challenged to solve a series of narrative-embedded puzzles encoded in the room’s artifacts in order to “escape” within a set period of time. The University of California Museum of Paleontology, with partners University of Kansas Natural History Museum and the California Academy of Sciences, aim to develop, evaluate, and disseminate a “serious game” (i.e., a game designed for a purpose other than entertainment) based on the escape room model. Our traveling/loanable pop-up escape room and associated extension activities will engage diverse families (ages 8 and up) in museums and libraries in solving a biomedical mystery that teaches fundamental concepts in biology, engages critical-thinking and collaboration skills, and stimulates interest in biomedical careers. STEM Escape will address NGSS-aligned content central to medical research – in particular, it will communicate basic concepts regarding evolutionary relationships, a topic with relevance to a wide variety of medical applications, such as determining the source of emerging infectious diseases, tracking the progression of disease within a host, and identifying new medicines. The project is designed to lay the groundwork for extended family interactions surrounding scientific content and biomedical careers. The immersive game will be supplemented by a set of solo and docent-led follow-up activities that reinforce key concepts and emphasize connections between players’ experience in the game and biomedical research careers. Learners will also receive takeaway media (e.g., activity book) that highlights a diverse set of NIH-funded researchers whose work directly relies on evolutionary patterns/processes. Caregivers will have the option of receiving a follow-up email with free at-home activities. The themed inflatable pop-up room will be wheelchair-accessible and all materials will be bilingual in English and Spanish. The STEM Escape experience will be developed with and for the diverse audiences visiting urban/suburban natural history museums and libraries, as well as with and for rural families, whom we will reach through rural libraries. The project will also produce and evaluate a suite of support materials to facilitate institutional adoption and deployment of the experience. Nine host sites across the country have committed to hosting the room (with an additional two sites in the planning stages), and after the life of the grant, the room will continue to make an impact as a rentable traveling exhibit. Long term, this project will improve the public’s understanding of medically relevant evolutionary content, increase interest in biomedical careers, particularly among underserved groups targeted, and improve our understanding of how immersive games can be used to serve educational objectives.
DATE: -
TEAM MEMBERS: Lisa White
resource project Public Programs
For nearly 20 years, the UAB Center for Community OutReach Development (CORD) has conducted SEPA funded research that has greatly enhanced the number of minority students entering the pipeline to college and biomedical careers, e.g., nearly all of CORD’s Summer Research Interns since 1998 (>300) have completed/are completing college and most of them are continuing on to graduate biomedical research and/or clinical training and careers. CORD’s programs that focused on high and middle school students have drawn many minority students into biomedical careers, but a low percentage of minority students benefit from these programs because far too many are already left behind academically in grades 4-6, due, at least in part, to a significant drop in science grades between grades 4 and 6, a drop from which most students never recover. A major contributor to this effect is that most grade 4-6 teachers in predominantly minority schools lack significant formal training in science and often are not fully aware of the great opportunities offered by biomedical careers.

In SEEC II, CORD will deliver intensive inquiry-based science training to grade 4-6 teachers, providing them with science content and hands-on science experiences that will afford their student both content and skills that will make them excited about, and competitive for, the advanced courses needed to move into biomedical research careers. SEEC II will also link teachers together across the elementary/middle school divide and bring the teachers together with administrators and parents, who will experience firsthand the excitement that inquiry learning brings and the significant advancement it provides in science and in reading and math. At monthly meetings and large annual celebrations, the parents, teachers and administrators will learn about the opportunities that biomedical careers can provide for the student who is well prepared. They will also consider the financial and educational steps required to ensure that students have the ability to reach these professions.

SEEC II will also expand CORD’s middle school LabWorks and Summer Science Camps to include grade 4-5 students and provide the teachers with professional learning in informal settings. During summer training, in small groups, the teachers will expand one of the inquiry-based science activities that they complete in the training, and they will use these in their classrooms and communicate with the others in their group to perfect these experiences in the school year. Finally, the teachers and grade 4-5 students will develop science and engineering fair-type research projects with which they will compete both on the school level and at the annual meeting. Thus, the students will share with their parents the excitement that science brings. The Intellectual Merit of SEEC II will be to test a model to enhance grade 4-6 teacher development and vertical alignment, providing science content, exposure to biomedical scientists and training in participatory science experiments, thus positioning teachers to succeed. The Broader Impacts will include the translation and testing of a science education model to assist minority students to avoid the middle school plunge and reach biomedical careers.
DATE: -
TEAM MEMBERS: J. Michael Weiss
resource project Public Programs
The concept of One Health emphasizes the connection between human health, the health of animals and the health of the environment – with the goal of improving all health. The One Health approach supports collaborations between physicians, veterinarians, dentists, nurses, ecologists, and other science, health and environmentally-related disciplines. The One Health approach is increasingly important as our population rises, agriculture intensifies, and habitat destruction increases.

The goal of our “One Health” project is to increase adolescents’ understanding of One Health concepts and the importance of One Health collaborations. We will accomplish this by developing and disseminating: (1) Classroom lessons for high school students that are case-based, incorporate hands-on activities, and align with the Next Generation Science Standards, and; (2) Activities for middle and high school students that are suitable for use in a variety of informal (non-school) education settings. During this five-year project we will:
• Collaborate with scientists and life science teachers to develop case-based, hands-on One Health lessons for high school students.
• Develop and use a reliable and valid pre/post assessment to determine the impact of the One Health lessons on student learning.
• Implement a dissemination plan in which we will recruit, train and support a national network of “teacher-presenters” to lead professional development workshops for their peers throughout the US.
• Develop activities that will be used for middle school and high school One Health field trip programs at the University of Rochester’s Life Sciences Learning Center.
• Collaborate with informal educators to create One Health activities to be used in their outreach programs.

This project is significant because it will improve students’ understanding of the One Health approach to promoting the health of people, animals, and the environment. This project will also significantly impact teachers’ awareness of One Health, and how One Health concepts are aligned with NGSS and can be incorporated into their existing curriculums. This project is innovative because it will develop One Health lessons and activities for use in a variety of settings, through partnerships with scientists, science teachers, and informal science educators. This project will also feature an innovative model for disseminating the One Health lessons to teachers nationwide using peer-to-peer professional development.
DATE: -
TEAM MEMBERS: Dina Markowitz
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda
resource project Public Programs
Many of the Hispanic children and families who live in the Rio Grande Valley lack opportunities to engage in inspirational and educational experiences introducing Science, Technology, Engineering and Mathematics (STEM) concepts and related careers. The University of Texas, Rio Grande Valley (UTRGV) will adapt and research the "Energy and U Show," which will introduce thousands of children and families to an exciting and dramatic that shows interconverting different forms of energy. The show will meld the excitement of chemical demonstrations and the natural connection between energy and STEM education in a fully produced, on-stage science extravaganza. A foundational philosophy of the show is that there is additional real value in getting children and youth onto a college campus. For many of its participants, this is their first time sitting in a seat at a university, the first opportunity for them to envision themselves in this environment. In partnership with the University of Minnesota, which originally developed the show, UTRGV will adapt the show, now presented in English, to a bilingual, culturally accessible format that is designed to Hispanic family audiences and student groups in learning about energy and related careers. Evaluation results demonstrate that the show has effectively engaged thousands of Minnesota students. The target audience will be upper elementary (4th-5th grade), middle school students, and their parents. This project will be led by UTRGV, nation's second-largest Hispanic Serving Institution, with a student enrollment of 28,000, of which over 90% are Hispanic and more than 60% are first-generation college students). In addition to the show, the project will include: (1) a manual to guide implementation of the program and related resources at different national or international venues; (2) educational resources for parents, teachers and school counselors introducing STEM careers and specific STEM college majors; (3) mentoring of UTRGV faculty in outreach activities; and (4) dissemination of the show to other campuses and venues.

The project will conduct ongoing research and evaluation guiding the adaptation of the show and investigation of factors contributing to positive educational impacts of the project, which will be carried out by a bilingual/bicultural researcher. Project research instruments will measure student level of engagement, interest and learning, as well as college interest, in surveys and analysis of data pre and post demonstration. The project will specifically investigate the impact of language on student impacts. Each component of this project will be studied to determine program intervention effectiveness (the scientific demonstration and language of the demonstration). To determine program effectiveness, a baseline of data before program implementation will be established concerning Hispanic students, their persistence, and perceptions of the environment. The project will measure parent perceptions of STEM careers for their children through pre and post demonstration surveys and focus groups. Student and parent research participants will be able to use surveys or respond to other research activities in the language of their choice. Project findings will contribute to the knowledge base concerning how linguistically and culturally adapted science shows and related resources adapted into can have positive impacts regarding the STEM knowledge and careers of students and parents from low-income and Hispanic communities.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Karen Lozano Arturo Fuentes Aaron Massari Brian Warren
resource project Public Programs
Mentoring is a widely accepted strategy for supporting positive socioemotional and cognitive development across a variety of sectors including education, workforce development, and the justice system. An estimated 2.5 million volunteer mentors support youth development in the United States each year. However, there is broad concern that practice has outpaced empirical testing, with significant gaps in the research literature on important modifiers of mentoring relationships and their impacts. This is especially true for mentoring youth ages 10-14 in STEM. Studying highly successful programs may be one way to better understand the role of mentoring and moderators of mentoring effectiveness. The Science Club, a community-based STEM mentoring program for middle-grade youth in the Chicago area, will provide multiple sites for a research study to examine three important issues for advancing theory and practice for STEM mentoring. These issues include (1) understanding STEM mentoring for youth in the middle grades, (2) identifying outcomes and motivations for scientist mentors to more fully participate in mentoring programs, and (3) examining a model of middle-school-focused STEM mentoring collaboration.

Through a series of three studies, the team will investigate which elements of the mentoring relationships are associated with the demonstrated STEM identity gains in youth participants. The work will also contribute much-needed data on the impact of STEM mentoring relationships on the mentors themselves. Study 1 is designed as a retrospective study of program alumni, both youth and mentors, about the nature and extent of each their STEM identity shifts during their time in Science Club. A purposeful sample of 160+ youth and 100+ mentor alumni will participate. Study 2 is a prospective study of three consecutive cohorts of active Science Club participants, built on data and findings from Study 1. In Study 2, the team will design and implement a new Identity-Focused Mentoring Observation Instrument specifically aimed at exploring the nature and quality of mentoring relationships and their role in science identity development longitudinally. Three independent cohorts of 40 youth and 20 mentors each will participate. Study 3 is retrospective, examining how participating individuals and organizations perceive and are impacted by mentoring. The three studies employ a mixed methods approach utilizing surveys, observations, individual interviews, and document review.

This proposal will fill critical gaps in the mentoring literature regarding the formative middle school years through novel, empirical research. Building on the current literature and practice, outcomes of the work will inform practice and enhance knowledge-building in the field on both mentoring relationships and the collective impact of university-school-OST partnerships.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Michael Kennedy Rabiah Mayas Bernadette Sanchez