Skip to main content

Community Repository Search Results

resource project Media and Technology
Purpose: This project will develop and test Happy Atoms, a physical modeling set and an interactive iPad app for use in high school chemistry classrooms. Happy Atoms is designed to facilitate student learning of atomic modeling, a difficult topic for chemistry high school students to master. Standard instructional practice in this area typically includes teachers using slides, static ball and stick models, or computer-simulation software to present diagrams on a whiteboard. However, these methods do not adequately depict atomic interactions effectively, thus obscuring complex knowledge and understanding of their formulas and characteristics.

Project Activities: During Phase I (completed in 2014), the team developed a prototype of a physical modeling set including a computerized ball and stick molecular models representing the first 17 elements on the periodic table and an iPad app that identifies and generates information about atoms. A pilot study at the end of Phase I tested the prototype with 187 high school students in 12 chemistry classes. Researchers found that the prototype functioned as intended. Results showed that 88% of students enjoyed using the prototype, and that 79% indicated that it helped learning. In Phase II, the team will develop additional models and will strengthen functionality for effective integration into instructional practice. After development is complete, a larger pilot study will assess the usability and feasibility, fidelity of implementation, and promise of Happy Atoms to improve learning. The study will include 30 grade 11 chemistry classrooms, with half randomly assigned to use Happy Atoms and half who will continue with business as usual procedures. Analyses will compare pre-and-post scores of student's chemistry learning, including atomic modeling.

Product: Happy Atoms will include a set of physical models paired with an iPad app to cover high school chemistry topics in atomic modeling. The modeling set will include individual plastic balls representing the elements of the periodic table. Students will use an iPad app to take a picture of models they create. Using computer-generated algorithms, the app will then identify the model and generate information about its physical and chemical properties and uses. The app will also inform students if a model that is created does not exist. Happy Atoms will replace or supplement lesson plans to enhance chemistry teaching. The app will include teacher resources suggesting how to incorporate games and activities to reinforce lesson plans and learning.
DATE: -
TEAM MEMBERS: Jesse Schell
resource project Media and Technology
Purpose: Purpose: This project team will fully develop and test Teachley Connect, a platform that syncs a variety of third-party math games to give elementary schools formative assessment data and intervention support. Mobile math games provide opportunities for students to access educationally-meaningful content in and out of the classroom and to supplement instruction. There are a number of examples of math apps that show promise for supporting and assessing student learning in different areas of mathematics, yet few apps in the marketplace provide meaningful data that teachers can use. Many games provide an overall score at the end of the session, but do not help teachers know what skills students are struggling with or how to provide additional support.

Project Activities: During Phase I, (completed in 2015), the team developed a prototype of Teachley Connect, which enables the secure transfer of game and learning data between third-party math games and the Teachley servers. At the end of Phase I, researchers completed a pilot study with 20 students and two teachers and demonstrated that the prototype operated as intended with important trends indicating that the system promotes student engagement and less time spent seeking help. In Phase II, the team will add additional third party math apps to the platform, strengthen the backend management system to tag user game-play data, and build out the teacher reporting dashboard to inform instruction and identify apps to address particular student and class needs. After development is complete, the research team will conduct a larger pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the Teachley Connect for teachers to use formative assessment data to inform classroom practice, select apps to address individual student needs, and support student math learning. The study will include 12 (grade K to 3) classrooms and randomly assign them into one of three groups: 1) apps only, 2) Teachley-enabled apps, or 3) Teachley-enabled apps + data. Researchers will compare pre-and-post scores of student's math learning, classroom observations, and teacher surveys/interviews.

Product: Teachley Connect will be a mobile tablet-based platform that uses games to give elementary schools rich formative assessment data and intervention support. Teachley Connect will permit students to continue playing exactly where they left off on any tablet. The platform will also connect apps into a single teacher dashboard, providing teachers detailed reports on student performance across games, with insights for informing individual or whole group instruction. The platform will include teacher resources to support the alignment of game play with learning goals and to support implementation.
DATE: -
TEAM MEMBERS: Kara Carpenter
resource project Media and Technology
Purpose: The team will fully develop and test three puzzle-based math games that adaptively assess and support student learning in middle school classrooms. A principle objective of middle school math is to prepare students for more complicated and advanced STEM topics, providing the foundation for a wide variety of college majors and careers. Students who struggle in math in grade 5 and 6 are more likely to show deficits as coursework turns to topics in algebra. However, in many classrooms, commonly used progress monitoring instruments often do not adjust in ease or difficulty based on student performance, and do not provide data teachers can use to tailor instruction to meet the needs of students.

Project Activities: During Phase I (completed in 2015), the team developed a prototype of an adaptive engine for Wuzzit Trouble, a previously developed app where players rotate a virtual wheel to solve puzzles by applying number sense mathematical strategies. The engine tailors gameplay to the skill level of individual students in real time, providing tips and support to students having difficultly or by making challenges more difficult for those who master puzzles. The research team conducted a pilot study at the end of Phase I in order to test the prototype. A little more than 200 grade 5 and 6 students and six teachers participated over two weeks. Researchers found that the prototype functioned as intended and that teachers successfully used the game before, during, and after class as a supplement to instruction. They learned that 65% of students enjoyed using the prototype and 46% indicated that the game adjusted to the right level of difficulty during gameplay. In Phase II, the team will develop two new games on topics including algebraic thinking and problem solving, will strengthen and validate the adaptive engine, and will build out the dashboard to report formative and summative assessment results. After development is complete, the researchers will carry out a larger pilot study to assess the usability and feasibility, fidelity of implementation, and promise of the three games to improve student learning over a 9-week period. Thirty-two grade 5 and 6 math classrooms from 16 schools will participate. One classroom from each school will be randomly assigned to use the games and half will continue with business-as-usual procedures. The researchers will compare pre-and-post scores for student learning on standardized measures of pre-algebra topics. They will also track teacher implementation.

Product: The final product will include a suite of three app-based puzzle games aligned to national math standards for number sense, algebraic thinking, and problem solving. The games will be designed for use in grade 5 and 6 classrooms where students develop and apply content expertise to solving challenges. The games will include an adaptive engine that assesses and adjusts content based on student level of performance, a back-end system to organize data, and a reporting dashboard to present measures of student performance, persistence, and creativity. The project team will also develop teacher resources for suggesting how to incorporate games and activities into classroom instructional practice to reinforce lesson plans and learning.
DATE: -
TEAM MEMBERS: Randy Weiner
resource project
This project will advance efforts of the innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by producing empirical findings and/or research tools that contribute to knowledge about which models and interventions with K-12 students and teachers are most likely to increase capacity in the STEM and STEM cognate intensive workforce of the future.

The project will build a path to further research on best practices for Native American youth education. It will enhance the existing Indigenous Arts and Sciences (IAS) project by addressing cultural perspectives of Native students and educators. The approach describes the need to include ecological relevance in STEM learning for Native American youth, with an integration of Western science with Native knowledge, process, and core values, which will give a positive impact on Native American youth's interest in and learning of science. The project will deliver a culturally relevant stewardship-based education model applying science to indigenous knowledge and community culture connections in collaboration with four tribal communities in Wisconsin. Informal science education will come through the Earth Partnership (EP) and will involve participants in habitat restoration and stewardship as a context for intergenerational science learning across age, discipline, culture and place. EP Indigenous Arts and Sciences (IAS) integrates Western science with Native knowledge, process, and core values including relationship, reciprocity, respect and responsibility.

The project will convene the expertise of elders and community members from Red Cliff, Bad River, Lac du Flambeau, and Ho-Chunk Nations with university social, physical, and life scientists to expand informal science learning incorporating ecological protection and restoration, citizen science, and cultural diversity. STEM learning and career pathways for underrepresented groups will occur in an informal and culturally relevant contexts becoming important for enhancing ecological and STEM literacy, efficacy and civic engagement. IAS will engage students, educators, elders, informal educators, natural resource professionals, and parents in community dialogues and relationship building, informal-formal professional development collaborations, and indigenized STEM learning experiences and mentoring for students in grades 8-12. The science content will be explored through technology-enhanced, project-based learning in real-life contexts integrating culture in classroom and informal settings. This project is based on a growing body of research on Indigenous wisdom that reconnects Native youth and the broader community with the environment. The project occurs broadly at the intersection of science learning, environmental justice, ecological restoration, tribal history, and culture at a crucial time of global climate and social change. IAS will use this project-based learning model to advance the knowledge of how and why indigenizing informal science learning through a collaborative effort including elders, families, youth, formal and informal educators will revitalize culture, community and education.
DATE: -
TEAM MEMBERS: Cheryl Bauer-Armstrong Naomi Tillison Michelle Cloud Delores Gokee-Rindal Brian Gauthier
resource project Professional Development, Conferences, and Networks
The National Science Foundation (NSF) Climate Change Education Partnership Alliance (CCEPA) is a consortium made up of the six Phase II Climate Change Education Partnership (CCEP-II) program awardees funded in FY 2012. Collectively, the CCEPA is establishing a coordinated network devoted to increasing the adoption of effective, high quality educational programs and resources related to the science of climate change and its potential impacts. The establishment of a CCEPA Coordination Office addresses the need for a coordinating body that leverages and builds upon the CCEPA projects' individual initiatives. The CCEPA Coordination Office facilitates interactions to leverage a successful network of CCEP-II projects and individuals engaged in increasing climate science literacy. The efforts of the Coordination Office advance knowledge and understanding of how to effectively network related, but different, projects into a cohesive enterprise. The goal is to coordinate a functional network, where the whole is greater than the sum of the parts.

The CCEPA Coordination Office at the University of Rhode Island is helping to move the CCEPA network forward on a number of key initiatives that strengthen it, reduce duplication, and enhance its overall impact. An important role of the Coordination Office is the facilitation of the transfer of best practices between projects. An effective network forges collaborations and establishes communities of practice through network working groups, building intellectual capital network-wide. The CCEPA Coordination Office has a key role in assisting the CCEPA project PIs and staff to disseminate the results of their work. Partnerships with other relevant societies and organizations assist the Coordination Office in identifying opportunities and synergies for sharing, disseminating, and leveraging network products as well as best practices that emerge as Earth system science education models and tools are evaluated. This endeavor broadens the collective impact of the individual projects across the country.
DATE: -
TEAM MEMBERS: Gail Scowcroft
resource project Professional Development, Conferences, and Networks
The scientific community has been under increasing pressure from policymakers and the public to explain how research contributes to the public good. The community has emphasized two distinct approaches to explaining its operations and value. The first is the use of narratives that can make the work of science more accessible and engaging to nonscientists. The other is the use of new data mining and analysis methods to document quantitatively the complex paths by which research progresses and eventually contributes to a variety of societal goals. While both of these approaches have proved useful, the goal of this workshop is to explore ways that they might be combined into a hybrid approach that will be even more effective.

This workshop will assemble experts in the narrative and data-driven science communication approaches with leading science researchers to discuss how these various perspectives can be merged to define a template for a type of communication that encompasses the appeal of narrative, the rigor of new analytic data, and the understanding of how science works in practice.
DATE: -
TEAM MEMBERS: Kevin Finneran
resource project Public Programs
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by producing empirical findings and/or research tools that contribute to knowledge about which models and interventions with K-12 students and teachers are most likely to increase capacity in the STEM and STEM cognate intensive workforce of the future.

The LinCT (Linking Educators, Youth, and Learners in Computational Thinking) project at the Science Museum of Minnesota (SMM) will engage female teachers-in-training and youth from underrepresented demographics in immersive technology experiences and STEM education. LinCT will guide teachers to develop their understanding and use of technology in the classroom, as well as prepare youth for a future where technology plays a key role in a wide range of professional opportunities. The project aims to inspire teachers and youth to see the possibilities of technological competencies, as well as why the incorporation of technology can build meaningful learning experiences and opportunities for all learners. The LinCT program model offers learning and application experiences for participating teachers and youth and provides an introduction of technological tools used in SMM educational programs and professional development on approaches for engaging all learners in STEM. Both groups will provide instruction in SMM technology-based Summer Camps, reaching 1,000 young people every year. In each following school year, project educators will develop and deliver technology-based programs to nearly 1,000 under-served and underrepresented elementary students. The project will allow teachers and youth to deliver exciting and engaging technology-based programs to nearly 4,000 diverse young learners. As a result, all participants in this project will be better equipped to incorporate technology in their future careers.

The LinCT project will investigate effective approaches for broadening the participation of underrepresented populations by providing female pre-service teachers and female youth with opportunities to lead programming at the Science Museum of Minnesota (SMM). Over three years, the LinCT project will employ 8-12 female teachers-in-training [Teacher Tech Cadres (TTC)] and 12-24 female youth [Youth Teaching Tech Crews (Y-TTC)] from demographics that are underrepresented in STEM fields. The integration of these groups will result in relationships fostered within an educational program, where all participants are learners and teachers, mentors and mentees. The results of this unique program model will be assessed through the experiences of this focused professional learning and teaching community. The LinCT research study will focus on three aspects of the project. First, it will seek to understand how the teachers-in-training and youth experience the project model's varied learning environments. Next, the study will explore how the TTC's and the Y-TTC's motivation, confidence, and self-efficacy with integrating technology across educational settings change because of the program. Finally, the study will seek to understand the lasting aspects of culture, training, and community building on SMM's internal teams and LinCT partner institutions (University of St. Catherine's National Center for STEM Elementary Education and Metropolitan State University's School of Urban Education).
DATE: -
TEAM MEMBERS: Kathryn Guimond Sarah Cohn Joseph Adamji Lauren Causey Shannon McManimon
resource project Public Programs
The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects.

STEM Practice-rich Investigations for NGSS Teaching (SPRINT) is an exploratory project that will research and develop resources and a model for professional learning needed to meet the demand of implementing the Next Generation Science Standards (NGSS). The Exploratorium Teacher Institute will engage middle school science teachers in a one-year professional learning program to study how familiar routines and classroom tools, specifically hands-on science activities, can serve as starting points for teacher learning. The Teacher Institute will use existing hands-on activities as the basis for developing "practice-rich investigations" that provide teachers and students with opportunities for deep engagement with science and engineering practices. The results of this project will include: (1) empirical evidence from professional learning experiences that support teacher uptake of practice-rich investigations in workshops and their classrooms; (2) a portfolio of STEM practice-rich investigations developed from existing hands-on activities that are shown to enhance teacher understanding of NGSS; and (3) a design tool that supports teachers in modifying existing activities to align with NGSS.

SPRINT conjectures that to address the immediate challenge of supporting teachers to implement NGSS, professional learning models should engage teachers in the same active learning experiences they are expected to provide for their students and that building on teachers' existing strengths and understanding through an asset-based approach could lead to a more sustainable implementation. SPRINT will use design-based research methods to study (a) how creating NGSS-aligned, practice-rich investigations from teachers' existing resources provides them with experiences for three-dimensional science learning and (b) how engaging in these investigations and reflecting on classroom practice can support teachers in understanding and implementing NGSS learning experiences.
DATE: -
TEAM MEMBERS: Julie Yu
resource project Informal/Formal Connections
Early childhood education is at the forefront of the minds of parents, teachers, policymakers as well as the general public. A strong early childhood foundation is critical for lifelong learning. The National Science Foundation has made a number of early childhood grants in science, technology, engineering and mathematics (STEM) over the years and the knowledge generated from this work has benefitted researchers. Early childhood teachers and administrators, however, have little awareness of this knowledge since there is little research that is translated and disseminated into practice, according to the National Research Council. In addition, policies for both STEM and early childhood education has shifted in the last decade.

The Joan Ganz Cooney Center and the New America Foundation are working together to highlight early childhood STEM education initiatives. Specifically, the PIs will convene stakeholders in STEM and early childhood education to discuss better integration of STEM in the early grades. PIs will begin with a phase of background research to surface critical issues in teaching and learning in early childhood education and STEM. The papers will be used as anchor topics to organize a forum with a broad range of stakeholders including policymakers as well as early childhood researchers and practitioners. A number of reports will be produced including commissioned papers, vision papers, and a forum synthesis report. The synthesis report will be widely disseminated by the Joan Ganz Cooney Center and the New America Foundation.

The Discovery Research K-12 program (DRK-12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed project.
DATE: -
TEAM MEMBERS: Michael Levine Lori Takeuchi Elisabeth McClure
resource project Professional Development, Conferences, and Networks
The primary goal of the STEM Evaluation Community project is to increase the capacity of evaluators to produce high quality, conceptually sound, methodologically appropriate evaluations of NSF programs and projects. The project will contribute to the exploration of innovative new approaches for determining the impact of NSF programs and projects, promote the usefulness of NSF program and project evaluations, and help to expand the theoretical foundations for evaluating STEM education, workforce, and outreach initiatives. The STEM Evaluation Community will serve as a focal point for evaluation capacity building with and across the NSF programs that fund STEM education, workforce and outreach activities, bringing people and ideas together, facilitating dialogue, sharing resources, offering opportunities for dissemination and more. The resulting connected system of evaluators will promote social innovation through a lively, dynamic evaluation professional community in which NSF program and project evaluators will share their work, learn from each other, and, ultimately, leverage and enhance the existing evaluation capacity building infrastructure that has been developed for specific NSF programs and audiences, thus charting a course to build further evaluation capacity across NSF.
DATE: -
TEAM MEMBERS: Leslie Goodyear
resource project Professional Development, Conferences, and Networks
Science, Technology, Engineering, and Mathematics (STEM) education and workforce development in the US are critical for global competitiveness and national security. However, the U.S. is facing a decrease in entrants to the STEM workforce which is not shared evenly across demographics. Specifically, women, underrepresented minorities, and people with disabilities obtain STEM degrees and enter the STEM workforce at levels significantly below their demographic representation in the U.S. The National Science Foundation's (NSF) Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) program supports models, networks, partnerships and research to ensure the broadening participation in STEM of women, members of racial and ethnic groups that have been historically underrepresented, persons of low socio-economic status, and people with disabilities. This conference focuses on collective impact as a strategy to address the broadening participation challenge. Collective impact is distinguished from collaboration in that the alliances require a backbone organization to succeed. The goal of this project is to organize a conference to inform backbone organizations toward broadening participation in STEM education and the workforce.

The conference takes place at the University of California, San Diego January 20-22, 2017 and brings together Project Investigators from the Design and Development pilots, along with stakeholders in broadening participation in STEM on a local, regional, and national scale. The overarching goal of the conference is to develop the knowledge base of participants in the application of the collective impact model, and the role of backbone organizations to address specific issues and transition points of the STEM pipeline. Conference participants include K-12, community college, and university representatives; leaders in graduate education, policy makers and private sector employers. The conference includes plenary sessions, flash presentations, and interactive workgroups engaged in the development of collective impact approaches to problems in Broadening Participation in STEM. Workgroups share their insights, and audience feedback is electronically curated via Twitter and Storify. To respond in real time to participant questions or insights this conference uses the innovative platform, IdeaWave, to solicit, sort and value ideas from the attendees before, during, and after the conference. Conference results are integrated into a final report to inform the NSF INCLUDES Alliances backbone organizations. The intellectual merit of the project is that it advances knowledge about the barriers to broadening participation in STEM education and the workforce, the collective impact model, and the role of the backbone organization to guide the vision and strategy, and support the activities, evaluation, and communication of the NSF INCLUDES Alliances. The broader impact of this project is that it benefits society by informing backbone organizations, which leads to broadening participation of the STEM workforce and ultimately increases U.S. global competitiveness and national security.
DATE: -
TEAM MEMBERS: Kim Barrett
resource project Professional Development, Conferences, and Networks
As the NSF INCLUDES Program seeks to scale from the Launch Pilots to the full program, achieving its goals to promote the progress of science by broadening participation will rely on the ability to successfully scale the technical and human infrastructure for collaboration across the mini-backbones and the national backbone. The American Association for the Advancement of Science (AAAS) is seeking support for an NSF INCLUDES infrastructure conference that will provide a forum for discussion about current and long term technical and human infrastructure needs for scaling. Technical infrastructure might refer to the functions provided by any communication, community building and collaboration tool, such as document sharing or storage. Human infrastructure might refer to data analysts or community managers.

The conference would include discussion of the structures and processes for creating a shared, overarching vision of the changes at all levels and for all groups that would be needed to promote the talent development goals envisioned within INCLUDES, supporting the current design and development launch pilots, and supporting scaling and promoting conditions for sustainability. Based on research on collective impact and improvement science in education, we would offer presentations followed by structured conversations within the setting of working sessions. The goals of AAAS for diversity and inclusion in science, technology, engineering and mathematics (STEM) are very much in keeping with the goals of INCLUDES; thus AAAS proposes to offer its existing online platform, Trellis, to support this comprehensive initiative to develop STEM talent from all sectors and groups in our society.

The goals of the conference activity are to: (1) define short term and long term communications and networking needs that can support the pilots; (2) outline the technical specifications and human resources needed to support the pilots; (3) envision the technical, resource and human needs required to support Alliances; (4) develop design specifications for intra- and cross Alliance networking to support technical assistance, identification and curation of resources, support for communities of practice and capture of lessons learned and (5) propose tools, techniques, capacities and functionalities for an NSF INCLUDES National Network Backbone.
DATE: -
TEAM MEMBERS: Shirley Malcom Josh Freeman