Skip to main content

Community Repository Search Results

resource project Media and Technology
This Pilot and Feasibility study will build foundational knowledge about basic aspects of STEM webcams in the United States (US) from the perspectives of both practitioners and viewers. Thousands of webcams available to the public are operated by STEM organizations, such as zoos, museums, and government agencies. Learning theory suggests that STEM webcams, especially those with accompanying interpretive tools, have the potential to offer rich informal learning opportunities. However, yet no research has quantified any aspect (cognitive, behavioral, or emotional) of viewer outcomes. This study will be the first to develop baseline data regarding cognitive, behavioral, and emotional aspects of perceived viewer experience. Project activities include:


An inventory of STEM webcams that exist in the US, the STEM disciplines they represent, learning and engagement tools they employ, the number of viewers they reach, and the resources required for their operation
A survey of webcam operators, their STEM education goals, implementation strategies, and evaluation results; and
Surveys and interviews gathering data on viewers demographics and potential increase in curiosity, interest, knowledge, and behavior toward the STEM subject. This research will provide foundational knowledge for the STEM-education and research community that quantifies and describes many facets of the population of STEM webcams in the inventory.


Research activities will take place in three distinct phases, with Phase 1 laying the groundwork for Phases 2 and 3. Phase 1: The project team will conduct a systematic internet search for all identifiable STEM related webcams. Phase 2 (operator-focused): An online survey of practitioners of webcams operated by US-based STEM organizations will be conducted using Qualtrics software. Likert scales will be used. Various hypotheses will be tested regarding webcam program objectives, operations, and evaluations from the perspective of program operators or practitioners. Phase 3 (viewer-focused): Surveys and interviews with likely viewers of STEM webcams. Using the webcam inventory built in Phase 1, the team will collaborate with 20 informal STEM institutions that agree to survey their constituents to test hypotheses regarding webcam viewing practices, such as why and how viewers watch, and perceived outcomes of viewing, such as perceived influence on their interest, attitudes, knowledge, or behavior. The findings from this study will be widely shared with informal STEM institutions and webcam operators. It will provide foundational data for future experimental studies.
DATE: -
TEAM MEMBERS: Sarah Schulwitz Sara Hagenah Vanessa Fry
resource project Media and Technology
Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.

BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.

A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.

This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This pilot and feasibility project addresses the needs of youth (ages 10-19) who are deaf or hard of hearing and use either English or American Sign Language as their preferred method of communication. The project will develop and study video stories from members of the STEM workforce who are deaf or hard of hearing. Youth will view these videos on the web at home or at an afterschool program. These stories will help the youth become aware of the range of STEM careers that are available and their potential to pursue and succeed in these occupations. One of the biggest challenges young persons who are deaf or hard of hearing face is not having role models who are members of the STEM workforce. Without these role models they are not aware of the possibility that they could work in these fields. Several studies indicate that seeing other people with disabilities having success in STEM boosts self-confidence. Exposure to deaf role models allows deaf student to identify with successful deaf people and consequently believe they themselves could accomplish goals they previously thought out of their reach. Project collaborators include Gallaudet University Regional Center, Northeast Deaf & Hard of Hearing Service, Boys & Girls Club of Lynn, MA, and Bridge Multimedia.

The project will advance knowledge in the field of deaf education in informal settings. The research questions are: 1) How do adolescents who are deaf or hard of hearing integrate and use digital versions of firsthand stories from members of the STEM workforce? 2) How do parents and club leaders make use of the stories? 3) What kind of outcomes are made possible by using the stories such as interest in STEM careers 4) What modifications and additional would improve the stories to make them more useful and effective? 5) What dissemination strategies would maximize story use? The project will do a formative evaluation of the pilot videos using a sample of 30 family groups and 10 boys? and girls? participants. Families will meet with researchers at one of the collaborating institutions (Gallaudet University Regional Center East, Northeast Deaf & Hard of Hearing Service or TERC) depending on where they live. The researcher will work with one family or adolescent at a time. They will view the videos on a computer while the researchers observe and record data. After viewing the videos, researchers will ask them questions about what they learned, what might be added, changed, or improved. They will be asked to look at the videos later on their home computers and do things such as select a STEM career for further research. Additional data collection will involve completing a post-use online survey for adolescents and their parents.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Judy Vesel
resource project Media and Technology
Twin Cities PBS BRAINedu: A Window into the Brain/Una ventana al cerebro, is a national English/Spanish informal education project providing culturally competent programming and media resources about the brain’s structure and function to Hispanic middle school students and their families. The project responds to the need to eliminate proven barriers to Hispanic students’ STEM/neuroscience education, increase Hispanic participation in neuroscience and mental health careers and increase Hispanic utilization of mental health resources.

The program’s goals are to engage Hispanic learners and families by


empowering informalSTEM educators to provide culturally competent activities about the brain’s structure and function;
demonstrating neuroscience and mental health career options; and
reducing mental health stigma, thus increasing help-seeking behavior.


The hypothesis underpinning BRAINedu’s four-year project plan is that participating Hispanic youth and families will be able to explain how the brain works and describe specific brain disorders; demonstrate a higher level of interest of neuroscience and mental health careers and be more willing to openly discuss and seek support for brain disorders and mental health conditions.

To achieve program goals, Twin Cities PBS (TPT) will leverage existing partnerships with Hispanic-serving youth educational organizations to provide culturally competent learning opportunities about brain health to Hispanic students and families. TPT will partner with neuroscience and mental health professionals, cultural competency experts and Hispanic-serving informal STEM educators to complete the following objectives:


Develop bilingual educational resources for multigenerational audiences;
Provide professional development around neuroscience education to informal educators, empowering them to implement programming with Hispanic youth and families, and
Develop role model video profiles of Hispanic neuroscience professionals, and help partner organizations produce autobiographical student videos.


We will employ rigorous evaluation strategies to measure the project’s impact on Hispanic participants: a) understanding of neuroscience and brain health, particularly around disorders that disproportionately affect the Hispanic community; b) motivation to pursue neuroscience or mental health career paths; and c) mental health literacy and help-seeking behavior. The project will directly reach 72 Hispanic-serving informal STEM educators and public health professionals, and 200 children and 400 parents in underserved urban, suburban and rural communities nationwide.
DATE: -
TEAM MEMBERS: Rita Karl
resource project Media and Technology
For public health to improve, all sectors of society much have access to the highest quality health science news and information possible. How that information is translated, packaged and disseminated is important: the stories matter. Our journalism and mentoring program will grow the health science literacy of the nation by building the next generation of science communicators, ensuring that cadre of youth from historically disadvantaged groups have the discipline, creativity and critical thinking skills needed to be successful health science-literate citizens and advocates within their own communities.

Using a combination of youth-generated videos, broadcast reporting and online curriculum resources, PBS NewsHour will engineer successful educational experiences to engage students from all backgrounds, and particularly underserved populations, to explore clinical, biomedical, and behavioral research. The PBS NewsHour’s Student Reporting Labs program, currently in 41 states, will create 10 health science reporting labs to produce unique news stories that view health and science topics from a youth perspective. We will incorporate these videos into lesson plans and learning tools disseminated to the general public, educators and youth media organizations. Students will be supported along the way with curricula and mentorship on both fundamental research and the critical thinking skills necessary for responsible journalism. This process will ensure the next generation includes citizens who are effective science communicators and self-motivated learners with a deep connection to science beyond the textbook and classroom.

PBS NewsHour will develop a STEM-reporting curriculum to teach students important research skills. The program will include activities that expose students to careers in research, highlight a diverse assortment of pioneering scientists as role models and promote internship opportunities. The resources will be posted on the PBS NewsHour Extra site which has 170,000 views per month and our partner sites on PBS Learning Media and Share My Lesson—the two biggest free education resource sites on the web—thus greatly expanding the potential scope of our outreach and impact.

NewsHour broadcast topics will be finalized through our advisory panel and the researchers interviewed for the stories will be selected for their expertise and skills as effective science communicators, as well as their diversity and ability to connect with youth. Finally, we will launch an outreach and community awareness campaign through strategic partnerships and coordinated cross promotion of stories through social media platforms.
DATE: -
TEAM MEMBERS: Patti Parson Leah Clapman
resource project Media and Technology
This project will produce a four-part mini-series on African American Language (AAL) designed for television broadcast as well as for formal and informal public educational distribution. This mini-series addresses the social, cultural, and educational issues related to the most prominent, the most controversial, and the most misunderstood dialect in the history of American English--African American Language. Dialect prejudice, linguistic profiling, and language-based discrimination continue to be "so commonly accepted, so widely perceived as appropriate, that it must be seen as the last back door to discrimination. And the door is still wide open" (Lippi-Green 2012:73). By presenting the history, development, diversity, and symbolic role of language in the lives of African Americans, this documentary series helps to counteract the persistent misinformation and misinterpretation circulated about the language of African Americans. The series builds on the popular public reception to the one-hour documentary, Talking Black in America: The Story of African American Language, and includes the following episodes: 1) the historical and contemporary development of African American Language; 2) the diversity of language use among African Americans based on region, age, status, education, and style; 3) the use of language in expressive performance, including preaching, comedy, music, hip hop, spoken word, and other expressive genres; and 4) the role of language differences in educational achievement. A website accompanying the series will include a variety of educational resources, including streaming, discursive chapters with integrated vignettes from the episodes, additional commentary and background, activities, and discussion questions for each episode, with further online materials for education. The documentary and accompanying activities constitute an important milestone in the effort to educate the public about language diversity in American society.

No dialect in the history of American English has been more prominent, more controversial, and more misunderstood than African American Language, and dialect prejudice, linguistic profiling, and language discrimination still intensely affect speakers of this variety. By presenting the history, development, diversity, and symbolic role of language in the lives of African Americans, this documentary series will help to counteract the persistent misinformation circulated about African American Language. This series and the accompanying online materials offer an important milestone in the effort to educate the public about language diversity that can help to reduce linguistic discrimination in American society.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Walter Wolfram
resource project Media and Technology
Familiarity with statistical and data literacy is important in many areas of modern life, but there is little research on how adults continue to build mathematical literacy beyond formal schooling. Mass media science news stories contain much data, assuming that adults will understand the content.This 4-year project will first map the landscape of adult statistical literacy in the US, particularly as it relates to news consumption. The second phase will build on results from the first phase through a longitudinal study. In the third phase, the project will develop a range of experiments to manipulate mathematical explainers embedded in STEM news stories and test techniques with adult audiences, with the goal of identifying the attributes and affordances that best improve confidence and competence in the underlying math principles and their meaning to news stories. in addition to the research, project components include 12 broadcast video and social media pieces each year that will form the basis for testing with audiences, a one-day symposium for professional science journalists, and a written best practice guide that summarizes key findings and implications for practitioners.

Critical research questions are: How do mathematical competence and confidence differ among different segments of the adult population? How can STEM journalists improve adult mathematical competence and confidence through their reporting techniques? Phase 1 of the research will be a landscape review of mathematical content in the news including a baseline study of adult statistical literacy. Phase 2 will be a longitudinal study with news audiences recruited to participate in a panel study. Phase 3 will be iterative testing of the digital content based on the findings from Phases 1 and 2 and will use both focus groups and online testing. External evaluation will be conducted by TERC including an evaluation of the symposium for professional journalists.

The broader impacts of this project are twofold: the science videos created will be broadcast and made available free to a national audience including those in rural areas; and the training of science journalists has the potential for multiple, long term impact by increasing their ability to communicate statistics meaningfully to their readers/viewers.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
resource project Media and Technology
Despite the ubiquity of Artificial Intelligence (AI), public understanding of how it works and is used is limited This project will research, design, and develop innovative approaches focusing on Artificial Intelligence (AI) for under-represented youth ages 14-24. Program components include live social media chats with AI leaders, app development, journalistic investigations of ethical issues in machine learning, and review of AI-based consumer products. Youth Radio is a non-profit media and tech organizations that provides youth with skills in STEM, journalism, arts, and communications. They engage 250 youth annually through free after-school classes and work shifts. Participants are 90% youth of color and 80% low income. Project partners include the MIT Media Lab which developed App Inventor which allows novice users to build fully functional apps. Staff from Google will serve as a project advisor on the curriculum. The project has exceptional national reach through the dissemination of its media and apps through national outlets such as NPR and Teen Vogue as well as various platforms including online, on-air, as well as presentations, publications, and training tools. The project broadens participation by engaging these low income youth of color in developing skills critical to the workforce of the future. It will help prepare an upcoming generation of Artificial Intelligence creators, users, and consumers who understand the technology and embrace and encourage its potential.It will give them the necessary knowledge and opportunities for careers in an AI-driven future.

This project is grounded in sociocultural learning theory and practice and is interdisciplinary by design. The theoretical framework holds that Computational Thinking plus Critical Pedagogy leads to Critical Computational Literacy. Also, Digital Age Civics plus Participatory Culture leads to Civic Imagination helping youth build a better world through technology. The driving research questions include: What do underrepresented youth understand about AI and its role in society? What are the ethical dilemmas posed by AI from their vantage point? What are the features of an engaging ethics-centered pedagogy with AI? What impact do the AI products developed by the youth have on the target audience? The research design will use ethnographic techniques and design research to study and analyze youth learning. Data sources will include baseline surveys, audio recordings and transcriptions from learning sessions with the participants, research analytic memos, focus group interviews, student-generating artifacts of learning and finished products, etc. The design-based approach will enable systematic, evidence-based iteration on the initiative's activities, pedagogical approach and products. An independent summative evaluation will provide complementary data and perspective to triangulate with the research findings.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Elisabeth Soep Ellin O'Leary Harold Abelson
resource project Media and Technology
This conference grant will support professional development at Jackson WILD. Jackson WILD (formerly the Jackson Hole Wildlife Film Festival) is the premier industry conference for science and natural history documentary filmmakers and distributors, bringing the world's top factual storytellers together with inspiring STEM (Science, Technology, Engineering, Mathematics) professionals at a biennial industry conference and juried film festival. This project supports a robust thematic strand of professional development within the conference focused on strategies for making the science of science communication more accessible to an industry that has significant influence over the accuracy, quality and quantity of STEM stories reaching mainstream audiences through popular media.

The conference grant strategies are scaffolded upon the results of Jackson WILD's previous two conference awards which have employed multiple interventions aimed at 1) understanding how science communication expertise is perceived and gained by media content creators, 2) identifying the demographics and professional development needs of both emerging and seasoned STEM storytellers, and 3) finding pathways to enhance science communication expertise for STEM professionals seeing to increase their reach to public audiences. The current conference grant will build upon lessons learned and offer thematic professional development programming advancing science communication literacy and best practices among media professionals and STEM communicators. The 2019 Jackson WILD industry conference will also further expand the cross-industry STEM media fellows program, which offers professional development and cohort-building opportunities to emerging professionals in both STEM and media fields. The driving theory of change is that access to research-informed professional development and increased science communication fluency among content creators and STEM communicators results in products (i.e. documentary programs, podcasts, social media content, etc.) that are in better alignment with evidence-based best practices for communicating STEM topics to lay audiences. Therefore, the resulting media products will be more effective in engaging and educating those audiences, resulting in increased STEM literacy and informal STEM learning. To extend the reach and impact of the conference, the program content will be available on line via streaming videos and podcasts on various channels. Investing in professional development for science media professionals will strength the ecosystem of quality STEM media and help support public engagement in STEM more broadly. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understanding of deeper learning by participants.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Ru Mahoney Lisa Samford
resource project Media and Technology
This four-year research study will investigate families' joint media engagement (JME) and informal STEM learning while listening to the child-focused STEM podcast, Brains On! Prior research has shown that the setting where families most often listen to this podcast together is the family automobile as children are being driven to school, on road trips, or other activities. Brains On! is rooted in the mission-driven principle of public radio to educate and inspire. The target audience is children 5-12 years old and their parents or caregivers. Each episode ranges from 20-45 minutes in length and presents ideas from a variety of STEM disciplines such as physics, chemistry, biology and engineering featuring sound-rich explanations of concepts through fun skits, original songs and interviews with scientists. The episodes use a light-hearted, humorous approach to share oftentimes complex STEM information. To provide an interactive experience, hosts encourage the audience to participate with the show by sending in drawings, emailing photos of plants and animals, or posing questions to be answered in future episodes. Every episode is co-hosted by a different child who interviews top scientists about their work. The scientists are selected to be representative of the range of topics presented and are meant to serve as role models for the listeners and demonstrating a wide range of career options in the STEM field.

The research adds to the social learning theory of joint media engagement (JME) which has shown that interactions between people sharing a media experience can result in learning together. Recent work on Joint Media Engagement has focused on parent/child interactions with television/video in the home. But little is known about how families engage with children's STEM podcasts together and what learning interactions occur as a result. Even less is known about this engagement within an automobile setting. This research project will build new knowledge filling a gap in the informal STEM learning field. It will use a mixed-methods research design with three phases of research to answer these questions: 1) How does the Brains On! podcast mediate STEM-based joint media engagement and family learning in an automobile setting? 2) What does STEM based joint media engagement and family learning look and sound like in this setting? 3) How do "in-automobile" factors foster or impede STEM-based joint media engagement and family learning? Phase 1 is a listener experience video study of 30 families listening to the Brains On! episodes. Phase 2 is video-based case studies of the natural automobile-based listening behaviors of eight Phase 1 families. Phase 3 is an online survey of Brains On! listeners to understand how representative the findings from Phases 1 and 2 are to the larger Brains On! Research. Results will be shared widely with key audiences that can use the findings (media developers, ISE practitioners, ISE evaluators and researchers, and families). It will also make an important contribution to the Joint Media Engagement literature and the ISE field.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Amy Grack Nelson Molly Bloom
resource project Media and Technology
Science television shows are an important source of informal learning and enrichment for preschool-aged children. However, one limitation of television programming is that it is largely a one-way, non-interactive medium. Research suggests that children learn best through active engagement with content, and that parents can make TV watching more interactive by co-viewing and talking with their children. However, many parents and other adults may lack the time or experience and comfort with science language and content to provide critcial just-in-time support for their children. This study seeks to take advantage of recent advances in artificial intelligence that now allow children to enjoyably interact with automated conversational agents. The research team will explore whether such conversational agents, embedded as an on-screen character in a science video, can meaningfully interact with children about the science content of the show by simulating the benefits of co-viewing with an adult. If successful, the project could lay the foundation for a new genre of science shows, helping transform video watching into more interactive and engaging learning experiences. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This project will develop interactive videos incorporating a conversational agent in three 11-minute episodes of a future children's animated television program. The videos will enable children to speak with the main character of the show as the character solves everyday science mysteries, thus priming children to engage in observation, prediction, pattern finding, and problem solving through scaffolded conversation. This study will be carried out in two iterative cycles with the goal of developing and testing the embedded conversational function for each episode. In each cycle, the project team, which includes experts in children's TV production, as well as educational and HCI researchers will develop the storyboard and conversation prompts and follow-ups, create animated videos based on the revised script, and create a mobile application of the interactive video integrated with the conversational agent. Field testing with 10 children will be conducted to iteratively improve the embedded conversational function. In the pilot testing stage, a controlled study will be conducted with 30 children in each group (N=120): 1) watching the episode with the embedded conversational function; 2) watching the episode with a human partner carrying out the dialogue in the script rather than the virtual character; 3) watching the episode with pseudo-interaction, in which the animated character asks questions but does not attempt to understand or personally respond to children's answers; and 4) watching the episode with no dialogue. Data collected from the experiments will be used to examine whether and in what ways use of a conversational agent affects children's engagement, attention, communication strategies, perceptions, and science learning, and whether these effects vary by children's age, gender, socioeconomic status, language background, and oral language proficiency in English. The project will provide a comprehensive evaluation of the feasibility and potential of incorporating conversational agents into screen media to foster young children's STEM learning and engagement.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mark Warschauer Daniel Whiteson Sara DeWitt Andres Bustamante Abby Jenkins
resource project Exhibitions
The Antarctic Dinosaurs project aims to leverage the popularity and charisma of dinosaurs to inspire a new generation of polar scientists and a more STEM (Science, Technology, Engineering, Mathematics)-literate citizenry. The project, centered on a giant screen film that will reach millions of theatrical viewers across the U.S., will convey polar science knowledge through appealing, entertaining media experiences and informal learning programs. Taking advantage of the scope of research currently taking place in Antarctica, this project will incorporate new perspectives into a story featuring dinosaurs and journey beyond the bones to reveal a more nuanced, multi-disciplinary interpretation of paleontology and the profound changes the Antarctic continent has endured. The goals of the project are to encourage young people to learn about Antarctica and its connection to the rest of the globe; to challenge stereotypes of what it means to participate in science; to build interest in STEM pursuits; and to enhance STEM identity.

This initiative, aimed particularly at middle school age youth (ages 11-14), will develop a giant screen film in 2D and 3D formats; a 3-episode television series; an "educational toolkit" of flexible, multi-media resources and experiences for informal use; a "Field Camp" Antarctic science intervention for middle school students (including girls and minorities); fictional content and presentations by author G. Neri dealing with Antarctic science produced for young people of color (including non-readers and at-risk youth who typically lack access to science and nature); and presentations by scientists featured in the film. The film will be produced as a companion experience for the synonymous Antarctic Dinosaurs museum exhibition (developed by the Field Museum, Chicago, in partnership with the Natural History Museum of Los Angeles County, Discovery Place, Charlotte, NC, and the Natural History Museum of Utah). Project partner The Franklin Institute will undertake a knowledge-building study to examine the learning outcomes resulting from exposure to the film with and without additional experiences provided by the Antarctic Dinosaurs exhibition and film-related educational outreach. The study will assess the strategies employed by practitioners to make connections between film and other exhibits, programs, and resources to improve understanding of the ways film content may complement and inspire learning within the framework of the science center ecosystem. The project's summative evaluation will address the process of collaboration and the learning impacts of the film and outreach, and provide best practices and new models for content producers and STEM educators. Project partners include film producers Giant Screen Films and Dave Clark Inc.; television producer Natural History New Zealand (NHNZ); Discovery Place (Charlotte, NC); The Franklin Institute; The Field Museum; The Natural History Museum of Utah (The University of Utah); author G. Neri; and a team of scientists and diversity advisers. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project has co-funding support from the Antarctic section of the Office of Polar Programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Deborah Raksany Karen Elinich Andrew Wood