Skip to main content

Community Repository Search Results

resource project Media and Technology
Purpose: The team will fully develop and test three puzzle-based math games that adaptively assess and support student learning in middle school classrooms. A principle objective of middle school math is to prepare students for more complicated and advanced STEM topics, providing the foundation for a wide variety of college majors and careers. Students who struggle in math in grade 5 and 6 are more likely to show deficits as coursework turns to topics in algebra. However, in many classrooms, commonly used progress monitoring instruments often do not adjust in ease or difficulty based on student performance, and do not provide data teachers can use to tailor instruction to meet the needs of students.

Project Activities: During Phase I (completed in 2015), the team developed a prototype of an adaptive engine for Wuzzit Trouble, a previously developed app where players rotate a virtual wheel to solve puzzles by applying number sense mathematical strategies. The engine tailors gameplay to the skill level of individual students in real time, providing tips and support to students having difficultly or by making challenges more difficult for those who master puzzles. The research team conducted a pilot study at the end of Phase I in order to test the prototype. A little more than 200 grade 5 and 6 students and six teachers participated over two weeks. Researchers found that the prototype functioned as intended and that teachers successfully used the game before, during, and after class as a supplement to instruction. They learned that 65% of students enjoyed using the prototype and 46% indicated that the game adjusted to the right level of difficulty during gameplay. In Phase II, the team will develop two new games on topics including algebraic thinking and problem solving, will strengthen and validate the adaptive engine, and will build out the dashboard to report formative and summative assessment results. After development is complete, the researchers will carry out a larger pilot study to assess the usability and feasibility, fidelity of implementation, and promise of the three games to improve student learning over a 9-week period. Thirty-two grade 5 and 6 math classrooms from 16 schools will participate. One classroom from each school will be randomly assigned to use the games and half will continue with business-as-usual procedures. The researchers will compare pre-and-post scores for student learning on standardized measures of pre-algebra topics. They will also track teacher implementation.

Product: The final product will include a suite of three app-based puzzle games aligned to national math standards for number sense, algebraic thinking, and problem solving. The games will be designed for use in grade 5 and 6 classrooms where students develop and apply content expertise to solving challenges. The games will include an adaptive engine that assesses and adjusts content based on student level of performance, a back-end system to organize data, and a reporting dashboard to present measures of student performance, persistence, and creativity. The project team will also develop teacher resources for suggesting how to incorporate games and activities into classroom instructional practice to reinforce lesson plans and learning.
DATE: -
TEAM MEMBERS: Randy Weiner
resource project Media and Technology
Purpose: This project team will fully develop and test SuperChemVR, a virtual environment integrated within a Virtual Reality (VR) headset for an immersive exploration of a chemistry lab. While chemistry labs offer the benefits of hands-on experimentation to help students learn abstract concepts, they are costly to maintain, supervise, and pose safety risks. Virtual chemistry labs for computers and tablets allow students to explore chemistry safely with unlimited resources, and provide immediate feedback and automated assessments, but these "point-and click" experiences are not immersive or hands-on. Immersive VR allows users to fully experience an interactive, 3-Dimensional 360-degree environment.

Project Activities: During Phase I, (completed in 2016), the team developed a prototype of SuperChemVR, including a virtual chemistry lab environment within which students immerse themselves while wearing a VR headset. At the end of Phase I, researchers completed a pilot study with 54 students and three teachers. Results demonstrated that the hardware and software prototype operated as intended, teachers were able to integrate it within the classroom environment, and students were engaged while using the prototype. In Phase II, the team will add content modules and a gameplay narrative to the platform, build the automated feedback mechanism, strengthen the back-end management system, and build out the teacher reporting dashboard. After development is complete, the research team will conduct a larger pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the SuperChemVR for improving student learning in chemistry. The study will include 10 high school chemistry classrooms, half randomly assigned to use SuperChemVR and half to follow business-as-usual procedures. Researchers will compare pre-and-post scores of student's chemistry learning.

Product: SuperChemVR is a room-scale VR lab and learning game for high school chemistry students. While wearing a VR headset, students will be immersed in a simulated chemistry 3D-environment where they will be challenged to acquire basic lab and safety skills. Through actual, accurate measurement and experimentation, students will improve their understanding of chemistry practices as they learn using science to solve problems. VR will enhance students' chemistry experience by providing instant cleanup, access to infinite resources, and observations at exponentially larger and smaller scales while simulating accurate physical actions in a safe environment. In the game component of the intervention, students will participate in an outer-space adventure that takes place on a derelict spaceship requiring players to use chemistry to survive until they can be rescued. SuperChem VR will be used in the classroom by teachers as a demonstration tool, will provide implementation supports, and will provide teachers with reports on student performance.
DATE: -
TEAM MEMBERS: Jesse Schell
resource project Media and Technology
Purpose: This project team will fully develop and test Cyberchase Fractions Quest, a web-based mathematics game for students in grade 3 and 4. Research shows that inadequate understanding of fractions can persist from early grades through higher education, and that success in fractions predicts future success in mathematics and other STEM subjects.

Project Activities: During Phase I (completed in 2016), the team developed a prototype of Cyberchase Fractions Quest, including an interactive number line game with four levels of challenges, and a tool to scaffold learning through hints and provide encouragement as students progress. At the end of Phase I, the research team conducted a pilot study over one week with 60 grade 4 students, half of whom were randomly assigned to use the prototype and half assigned to paper-based fractions activities. Results revealed that the prototype functioned as intended, that students were engaged during gameplay, and that from pre- to post-test, students using the prototype increased significantly in their knowledge of number line problems compared to the control group. In Phase II, the team will finalize the design, artwork, and animation, the formative and summative assessment component, and learning management system. After development is complete, the researchers will carry out a pilot study to assess the usability and feasibility, fidelity of implementation, and promise of the game to improve student learning of fractions over a 5-week period. The study will include four classrooms of grade 3 students, two of which will be randomly assigned, to use the games to supplement in-class lessons while the others will use paper-based activities. The researchers will compare pre-and-post scores for student learning of fractions. The study will also track teacher implementation.

Product: The final product is Cyberchase Fractions Quest—a math game based on the storyline of PBS children's television series, Cyberchase. In the game, students in grades 3 and 4 will apply learning fractions within three contexts: areas and regions (such as shapes), sets (groups of objects), and on a number line. The game will identify specific areas where students struggle and will introduce challenges to support individualized learning. Similar to other popular game apps, student will receive immediate feedback from one to three stars based on how well they perform on each challenge as well as in-game rewards as they progress toward mastery. The game will include teacher resources for classroom implementation, and an educator dashboard presenting results.
DATE: -
TEAM MEMBERS: Gary Goldberger
resource project Media and Technology
In prior projects, including a 2015 ED/IES SBIR award, the team developed two immersive multiplayer virtual game environments. In Eco and Colony, middle school students collaboratively apply scientific practices within the virtual worlds to address challenges, such as the availability of resources and energy and maintaining clean water. With this Phase I funding, the team is developing a prototype of a teacher dashboard designed to improve classroom implementation of the virtual environments. The prototype will automatically generate reports on individual student contributions to the progress of the classroom-wide game, and track progress in mastering curricular learning goals. In the Phase I pilot research for three middle school social studies classrooms, the project team will examine whether the dashboard functions as planned, if teachers are able to use the dashboard to feasibly integrate the game within the classroom environment, and if teachers are able to use reports to track student progress.
DATE: -
TEAM MEMBERS: John Krajewski
resource project Media and Technology
With this Phase I funding, the project team will develop and test a prototype of the Toddler App and Cane which is intended to improve functional and adaptive school readiness skills for toddlers with visual impairments. The prototype will include a wearable hardware-based cane that wraps around a child's waist and provides tactile and audio cues to facilitate walking, a curriculum with game activities and walking routes, and an app that provides updates to special education practitioners and parents on their children's progress. In a pilot study with 10 toddlers with visual impairments, and their teachers and parents, the researchers will examine whether the prototype functions as planned, whether toddlers are engaged while using the prototype, and if teachers and parents believe the fully developed intervention will lead to increases in independence and school readiness.
DATE: -
TEAM MEMBERS: Elga Joffee
resource project Media and Technology
In prior research and development, the project team developed PocketLab, a set of web-based hands-on science simulations for middle school classrooms. With this Phase I funding, the team will develop and test a prototype of CloudLab, a classroom management platform to extend the functionality of PocketLab. The prototype will include a portal so that a class of students can collaborate on experiments, a lab notebook to analyze experimental data with graphing tools, and a teacher dashboard to monitor student progress in real time. In the Phase I pilot research, with six middle school teachers and 150 students, the project team will examine whether the prototype functions as planned, whether teachers are able to integrate it within the classroom environment, and whether students are engaged while using the prototype.
DATE: -
TEAM MEMBERS: Clifton Roozebook
resource project Media and Technology
As part of an overall strategy to enhance learning within informal environments, the Innovations at the Nexus of Food, Energy, and Water Systems (INFEWS) and Advancing Informal STEM Learning (AISL) programs partnered to support innovative models poised to catalyze well-integrated interdisciplinary research and development efforts within informal contexts that transform scientific understanding of the food, energy, and water systems (FEWS) nexus in order to improve system function and management, address system stress, increase resilience, and ensure sustainability. This project addresses this aim by using systems thinking and interdisciplinary integration approaches to develop a novel immersive educational simulation game and associated materials designed to highlight the role and importance of corn-water-ethanol-beef (CWEB) systems in supporting the ever increasing demands for food, energy, and water in the United States. The focus on FEWS and sustainable energy aligns well with both the INFEWS program and the sizable sustainability-related projects in the AISL program portfolio. The development and broad dissemination of a multiuser game specific to CWEB systems are particularly innovative contributions and advance for both program portfolios and their requisite fields of study. An additional unique feature of the game is the embedding of varying degrees of economic principles and decision-making along with the nuisances of cultural context as salient variables that influence systems thinking. Of note, a team of computer science, management and engineering undergraduate students at the University of Nebraska - Lincoln will be responsible for the engineering, development, and deployment of the game as their university capstone projects. If successful, this game will have a significant reach and impact on youth in informal programs (i.e., 4-H clubs), high school teachers and students in agriculture vocational education courses, college students, and the public. The impact could extend well beyond Nebraska and the targeted Midwestern region. In conjunction with the game development, mixed-methods formative and summative evaluations will be conducted by an external evaluator. The formative evaluation of the game will focus on usability testing, interest and engagement with a select sample of youth at local 4-H clubs and youth day camps. Data will be collected from embedded in-game survey questionnaires, rating scales, observations and focus groups conducted with evaluation sample. These data and feedback will be used to inform the design and refinement of the game. The summative evaluation will focus on the overall impacts of the game. Changes in agricultural systems knowledge, attitudes toward agricultural systems, interest in pursuing careers in agricultural systems, and decision making will be aligned with the Nebraska State Science Standards and tracked using the National Agricultural Literacy Outcomes (NALOs) assessment, game analytics and pre/post-test measures administered to the evaluation study sample pre/post exposure to the game.
DATE: -
TEAM MEMBERS: Jeyamkondan Subbiah Eric Thompson Deepak Keshwani Richard Koelsch David Rosenbaum
resource project Media and Technology
Changes in household-level actions in the U.S. have the potential to reduce rates of greenhouse gas (GHG) emissions and climate change by reducing consumption of food, energy and water (FEW). This project will identify potential interventions for reducing household FEW consumption, test options in participating households in two communities, and collect data to develop new environmental impact models. It will also identify household consumption behavior and cost-effective interventions to reduce FEW resource use. Research insights can be applied to increase the well-being of individuals at the household level, improve FEW resource security, reduce climate-related risks, and increase economic competitiveness of the U.S. The project will recruit, train, and graduate more than 20 students and early-career scientists from underrepresented groups. Students will be eligible to participate in exchanges to conduct interdisciplinary research with collaborators in the Netherlands, a highly industrialized nation that uses 20% less energy and water per person than the U.S.

This study uses an interdisciplinary approach to investigate methods for reducing household FEW consumption and associated direct and indirect environmental impacts, including GHG emissions and water resources depletion. The approach includes: 1) interactive role-playing activities and qualitative interviews with homeowners; 2) a survey of households to examine existing attitudes and behaviors related to FEW consumption, as well as possible approaches and barriers to reduce consumption; and 3) experimental research in residential households in two case-study communities, selected to be representative of U.S. suburban households and appropriate for comparative experiments. These studies will iteratively examine approaches for reducing household FEW consumption, test possible intervention strategies, and provide data for developing systems models to quantify impacts of household FEW resource flows and emissions. A FEW consumption-based life cycle assessment (LCA) model will be developed to provide accurate information for household decision making and design of intervention strategies. The LCA model will include the first known farm-to-fork representation of household food consumption impacts, spatially explicit inventories of food waste and water withdrawals, and a model of multi-level price responsiveness in the electricity sector. By translating FEW consumption impacts, results will identify "hot spots" and cost-effective household interventions for reducing ecological footprints. Applying a set of climate and technology scenarios in the LCA model will provide additional insights on potential benefits of technology adoption for informing policymaking. The environmental impact models, household consumption tracking tool, and role-playing software developed in this research will be general purpose and publicly available at the end of the project to inform future education, research and outreach activities.
DATE: -
TEAM MEMBERS: David Watkins Buyung Agusdinata Chelsea Schelly Rachael Shwom Jenni-Louise Evans
resource project Media and Technology
Well-designed educational games represent a promising technology for increasing students interest in and learning of STEM topics such as physics. This project will research how to optimally combine and embed dynamic assessment and adaptive learning supports within an engaging game design to build effective educational games. The project will add enhancements to a physics game called Physics Playground. The general goal of this research is to test a valid methodology that can be used in the design of next-generation learning games. The enhancement of Physics Playground will leverage the popularity of video games to capture and sustain student attention and teach physics to a much broader audience than is currently the case in traditional physics classrooms. To be most effective, this new genre of learning games needs to not only be highly engaging as a game but also to provide real-time assessment and feedback to students; support understanding of science content (i.e.,Newtonian physics); be accessible to beginners; accommodate a range of proficiencies and interests; and support equity. The research will have particular relevance to designers developing other science games and simulation by providing information about the kinds of learning supports and feedback to students are most effective in promoting engagement and learning. The project is supported by the Cyberlearning and Future Learning Technologies Program, which funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively.

The project will systematically develop, test, and evaluate ways to integrate engaging, dynamic learning supports in Physics Playground to teach formal conceptual physics competencies. More generally, the project aims to advance the learning sciences, particularly in the fields of adaptivity and assessment in educational technology. Using a design-based research approach spanning three years, the research team will: (1) develop and test the effectiveness of various learning support features included in the game in Year 1; (2) develop and test an adaptive algorithm to manage the progression of difficulty in game levels in Year 2; and (3) test learning supports and adaptive sequencing in a controlled evaluation study. This research will provide evidence of the instructional effectiveness of an educational game designed using principles of instructional, game, and assessment design. It will advance understanding of the contributions of different kinds of learning supports (e.g., visualizations and explanations) and adaptivity to game-based learning and contribute to the design of next-generation learning games that successfully blur the distinction between assessment and learning. The project will generate research findings that can be incorporated into other types of STEM learning games.
DATE: -
TEAM MEMBERS: Valerie Shute Russell Almond Fengfeng Ke
resource project Media and Technology
The project will research and further develop an interactive platform, Visitor Interactions in Microbiology (VIM), that enables museum visitors to influence and learn about the behavior of live microorganisms. Hands-on museum exhibits encourage visitors to engage with, and manipulate, scientific content. Currently, museum visitors experience microbiology by observing microorganisms through a microscope, through models, or through simulations, all of which limit interactivity. With the VIM platform, visitors draw on a screen or use a Kinect motion sensor to generate microscopic light images. The single celled organisms respond to these images in real-time. Preliminary testing shows that the platform has significant potential to promote prolonged engagement and science inquiry by visitors. The project will develop and research additional technological and design considerations to understand how VIM can be translated into effective museum exhibits. This project is supported by the Advancing Informal STEM Learning (AISL) program which funds research and innovative resources for use in a variety of settings as a part of its overall strategy to enhance learning in informal environments.

Project researchers will first compare VIM to existing microscopic exhibits to investigate both advantages as well as limitations with the platform. Based on that research, three iterations of prototypes of VIM and user testing will explore possible extensions of VIM with respect to modes of visitor interactions, types of organisms and types of stimuli. In addition to improving the VIM platform, the knowledge gained from this study will inform a new approach to informal science learning -- an approach that supports self-directed inquiry, interest in microbiology, and interest in underlying technology. The project will produce: (1) research results concerning the potential of VIM and the variety of interaction modes that are effective using the system and (2) an open-source catalogue of hardware, software and protocol instructions that will enable other institutions to take advantage of the research on VIM. Project research findings and resources will be widely disseminated to practitioners via conferences and professional journals. The research will provide the foundation for future work that will include the design of a permanent exhibition.
DATE: -
TEAM MEMBERS: Hans Riedel-Kruse Joyce Ma
resource project Media and Technology
This project will capitalize on the power of story to teach foundational computational thinking (CT) concepts through the creation of animated and live-action videos, paired with joint media engagement activities, for preschool children and their parents. Exposure at a young age to CT is critical for preparing all students to engage with the technologies that have become central to nearly every occupation. But despite this recognized need, there are few, if any, resources that (1) introduce CT to young children; (2) define the scope of what should be taught; and (3) provide evidence-based research on effective strategies for bringing CT to a preschool audience. To meet these needs, WGBH and Education Development Center/Center for Children and Technology (EDC/CCT) will utilize an iterative research and design process to create animated and live-action videos paired with joint media engagement activities for parents and preschool children, titled "Monkeying Around". Animated videos will model for children how to direct their curiosity into a focused exploration of the problem-solving process. Live-action videos will feature real kids and their parents and will further illustrate how helpful CT can be for problem solving. With their distinctive visual humor and captivating storytelling, the videos will be designed to entice parents to watch alongside their children. This is important since parents will play an important role in guiding them in explorations that support their CT learning. To further promote joint media engagement, hands-on activities will accompany the videos. Following the creation of these resources, an experimental impact study will be conducted to capture evidence as to if and how these resources encourage the development of young children's computational thinking, and to assess parents' comfort and interest in the subject. Concurrent with this design-based research process, the project will build on the infrastructure of state systems of early education and care (which have been awarded Race to the Top grants) and local public television stations to design and develop an outreach initiative to reach parents. Additional partners--National Center for Women & Information Technology, Code in Schools, and code.org (all of whom are all dedicated to promoting CT)--will further help bring this work to a national audience.

Can parent/child engagement with digital media and hands-on activities improve children's early learning of computational thinking? To answer this question, WGBH and EDC/CCT are collaborating on a design-based research process with children and their parents to create Monkeying Around successive interactions. The overarching goal of this mixed-methods research effort is to generate evidence that supports the development of recommendations around the curricular, instructional, and contextual factors that support or impede children's acquisition of CT as a result of digital media viewing and hands-on engagement. Moving through cycles of implementation, observation, analysis, and revision over the course of three years, EDC/CCT researchers will work closely with families and WGBH's development team to determine how children learn the fundamentals of CT, how certain learning tasks can demonstrate what children understand, how to stimulate interest in hands-on activities, and the necessary scaffolds to support parental involvement in the development of children's CT. Each phase of the research will provide rich feedback to inform the next cycle of content development and will include: Phase 1: the formulation of three learning blueprints (for algorithmic thinking, sequencing, and patterns); Phase 2: the development of a cohesive set of learning tasks to provide evidence of student learning, as well as the production of a prototype of the digital media and parent/child engagement resources (algorithmic thinking); Phase 3-Part A: pilot research on the prototype, revisions, production of two additional prototypes (sequencing and patterns); Phase 3-Part B: pilot research on the three prototypes and revisions; and Phase 4: production of 27 animated and live-action videos and 18 parent/child engagement activities and a study of their impact. Through this process, the project team will build broader knowledge about how to design developmentally appropriate resources promoting CT for preschool children and will generate data on how to stimulate interest in hands-on activities and the necessary scaffolds to support parental involvement in the development of children's CT. The entire project represents an enormous opportunity for WGBH and for the informal STEM media field to learn more about how media can facilitate informal CT learning in the preschool years and ways to broaden participation by building parents' capacity to support STEM learning. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Marisa Wolsky Heather Lavigne
resource project Media and Technology
This project, a collaboration of teams at Georgia Institute of Technology, Northwestern University, and the Museum of Design Atlanta and the Museum of Science and Industry in Chicago, will investigate how to foster engagement and broadening participation in computing by audiences in museums and other informal learning environments that can transfer to at-home and in-school engagement (and vice versa). The project seeks to address the national need to make major strides in developing computing literacy as a core 21st century STEM skill. The project will adapt and expand to new venues their current work on their EarSketch system which connects computer programming concepts to music remixing, i.e. the manipulation of musical samples, beats and effects. The initiative involves a four-year process of iteratively designing and developing a tangible programming environment based on the EarSketch learning environment. The team will develop three new applications: TuneTable, a multi-user tabletop exhibit for museums; TunePad, a smaller version for use at home and in schools; and an online connection between the earlier EarSketch program and the two new devices.

The goal is to: a) engage museum learners in collaborative, playful programming experiences that create music; b) direct museum learners to further learning and computational music experiences online with the EarSketch learning environment; c) attract EarSketch learners from local area schools to visit the museum and interact with novice TuneTable users, either as mentors in museum workshops or museum guests; and d) inform the development of a smaller scale, affordable tangible-based experience that could be used at homes or in smaller educational settings, such as classrooms and community centers. In addition to the development of new learning experiences, the project will test the hypothesis that creative, playful, and social engagement in the arts with computer programming across multiple settings (e.g. museums, homes, and classrooms) can encourage: a) deeper learner involvement in computer programming, b) social connections to other learners, c) positive attitudes towards computing, and d) the use and recognition of computational concepts for personal expression in music. The project's knowledge-building efforts include research on four major questions related to the goals and evaluation processes conducted by SageFox on the fidelity of implementation, impact, success of the exhibits, and success of bridging contexts. Methods will draw on the Active Prolonged Engagement approach (unobtrusive observation, interviews, tracking-and-timing, data summaries and team debriefs) as well as Participatory Action Research methods.

This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Michael Horn Brian Magerko Jason Freeman