Skip to main content

Community Repository Search Results

resource project Media and Technology
The Cyberlearning and Future Learning Technologies Program funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively. This project brings together two approaches to help K-12 students learn programming and computer science: open-ended learning environments, and computer-based learning analytics, to help create a setting where youth can get help and scaffolding tailored to what they know about programming without having to take tests or participate in rigid textbook exercises for the system to know what they know.

The project proposes to use techniques from educational data mining and learning analytics to process student data in the Alice programming environment. Building on the assessment design model of Evidence-Centered Design, student log data will be used to construct a model of individual students' computational thinking practices, aligned with emerging standards including NGSS and research on assessment of computational thinking. Initially, the system will be developed based on an existing corpus of pair-programming log data from approximately 600 students, triangulating with manually-coded performance assessments of programming through game design exercises. In the second phase of the work, curricula and professional development will be created to allow the system to be tested with underrepresented girls at Stanford's CS summer workshops and with students from diverse high schools implementing the Exploring Computer Science curriculum. Direct observation and interviews will be used to improve the model. Research will address how learners enact computational thinking practices in building computational artifacts, what patters of behavior serve as evidence of learning CT practices, and how to better design constructionist programming environments so that personalized learner scaffolding can be provided. By aligning with a popular programming environment (Alice) and a widely-used computer science curriculum (Exploring Computer Science), the project can have broad impact on computer science education; software developed will be released under a BSD-style license so others can build on it.
DATE: -
TEAM MEMBERS: Shuchi Grover Marie Bienkowski John Stamper
resource project Public Programs
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by producing empirical findings and/or research tools that contribute to knowledge about which models and interventions with K-12 students and teachers are most likely to increase capacity in the STEM and STEM cognate intensive workforce of the future.

The LinCT (Linking Educators, Youth, and Learners in Computational Thinking) project at the Science Museum of Minnesota (SMM) will engage female teachers-in-training and youth from underrepresented demographics in immersive technology experiences and STEM education. LinCT will guide teachers to develop their understanding and use of technology in the classroom, as well as prepare youth for a future where technology plays a key role in a wide range of professional opportunities. The project aims to inspire teachers and youth to see the possibilities of technological competencies, as well as why the incorporation of technology can build meaningful learning experiences and opportunities for all learners. The LinCT program model offers learning and application experiences for participating teachers and youth and provides an introduction of technological tools used in SMM educational programs and professional development on approaches for engaging all learners in STEM. Both groups will provide instruction in SMM technology-based Summer Camps, reaching 1,000 young people every year. In each following school year, project educators will develop and deliver technology-based programs to nearly 1,000 under-served and underrepresented elementary students. The project will allow teachers and youth to deliver exciting and engaging technology-based programs to nearly 4,000 diverse young learners. As a result, all participants in this project will be better equipped to incorporate technology in their future careers.

The LinCT project will investigate effective approaches for broadening the participation of underrepresented populations by providing female pre-service teachers and female youth with opportunities to lead programming at the Science Museum of Minnesota (SMM). Over three years, the LinCT project will employ 8-12 female teachers-in-training [Teacher Tech Cadres (TTC)] and 12-24 female youth [Youth Teaching Tech Crews (Y-TTC)] from demographics that are underrepresented in STEM fields. The integration of these groups will result in relationships fostered within an educational program, where all participants are learners and teachers, mentors and mentees. The results of this unique program model will be assessed through the experiences of this focused professional learning and teaching community. The LinCT research study will focus on three aspects of the project. First, it will seek to understand how the teachers-in-training and youth experience the project model's varied learning environments. Next, the study will explore how the TTC's and the Y-TTC's motivation, confidence, and self-efficacy with integrating technology across educational settings change because of the program. Finally, the study will seek to understand the lasting aspects of culture, training, and community building on SMM's internal teams and LinCT partner institutions (University of St. Catherine's National Center for STEM Elementary Education and Metropolitan State University's School of Urban Education).
DATE: -
TEAM MEMBERS: Kathryn Guimond Sarah Cohn Joseph Adamji Lauren Causey Shannon McManimon
resource project Public Programs
Science Club Summer Camp (SC2) is a practicum-based teacher professional development program for elementary school teachers, aligned to the recently released Next Generation Science Standards (NGSS). It seeks to address well-described gaps in the scientific training of elementary teachers that threaten the effective implementation of NGSS and interrupt development of early youth science skills. We offer that the best way to prepare a future STEM and biomedical workforce is to help improve NGSS-aligned instruction at the K-5 level.
SC2 uses an integrated approach to train Chicago Public School teachers and youth in the nature of science. An interdisciplinary team of scientists, master science teachers, NGSS experts, and youth development staff will collaborate to incorporate the NGSS Disciplinary Core Ideas (DCIs), Crosscutting Concepts, and science and engineering practices into both out-of-school time learning at a summer camp and academic year instruction. Program participants will also learn about NGSS connections to health and biomedicine through interactions with practicing scientists, visits to research labs, and inquiry into health phenomena.

Over the course of the program, we will train 64 teachers and more than 2000 youth in authentic science and health practices. A multi-faceted evaluation plan will assess the impact of our program on teacher beliefs, knowledge, and understanding of the NGSS, and the degree to which their training results in changes to their instructional practice. Additionally, we will help teachers design critical NGSS-aligned assessment tools as measures of student learning. These instruments will provide early evidence on the connections between NGSS-aligned instruction and deeper student learning.

In addition to addressing the acute need for NGSS-aligned teacher professional development strategies, and high quality summer learning opportunities for disadvantages youth, it is our expectation that this “dual use” approach will serve as a model for future teacher professional development programs that seek to bridge learning in formal and informal environments and strengthen academic-community partnerships.
DATE: -
TEAM MEMBERS: Michael Kennedy Rebecca Dougherty
resource project Public Programs
The goal of the Hawaii Science Career Inspiration grant (HiSCI) is to enhance science education resources and training available to teachers and students in disadvantaged communities of Hawaii in order to ensure a maximally large and diverse workforce to meet the nation’s biomedical, behavioural and clinical research needs. The HiSCI Program will build on the knowledge gained from two past SEPA grants and the University of Hawaii Center for Cardiovascular Research and leverage resources from all corners of the state to accomplish four specific aims:

1) Increase student interest and exposure to health science careers by providing multiple science exposure opportunities and mentoring along the primary, intermediate, and secondary school experiences for at least 300 students a year and a printed and web-based STEM career resource guide and career posters to alert students, counsellors and teachers to all available opportunities;

2) Provide professional development for 20 middle and high school teachers a year, to include scientific content and foster an understanding of the scientific research process, in addition to medical students mentoring intermediate and high school students;

3) Listen, respond to, and connect the science teacher community in Hawaii by holding innovative listening groups for teachers across the state; and

4) Provide tools and supplies for at least twenty K-12 classrooms a year through a mini-grant process and alert teachers across the state to free resources both locally and nationally. The HiSCI Program is highly relevant to Hawaii’s public health and science infrastructure as it will provide an innovative way to gain knowledge of science training needs and will provide many of the resources to teachers and students across the state by leveraging, communicating and sharing existing resources.
DATE: -
TEAM MEMBERS: Kelley Withy Rachel Boulay
resource project Public Programs
During middle school, many young people disengage from and consequently do not achieve in school-based STEM subjects. This phenomenon is more pronounced among young people in low-income communities than elsewhere. Many summer, out-of-school STEM programs are designed to offer young people opportunities to engage in hands-on, inquiry-based learning that promote interest and engagement in STEM. Research on the effect of these types of programs is limited, however. This research project seeks to fill this gap by identifying and studying practices that promote interest and engagement in STEM-related topics. The central goal of the summer STEM Interest and Engagement Study is to identify instructional practices associated with cultivating and sustaining young people's interest and engagement in out-of-school STEM summer learning programs for middle school youth. The project is based on a model of change developed from existing theory and empirical research on the cultivation of youths' interest and engagement in STEM. The project is a descriptive study that will apply multiple data collection and analytic methods, including the Experience Sampling Method (ESM), to determine instructional practices and the resulting interest, engagement, and perceptions of youth as they participate in STEM activities. In addition, survey data provided by program participants will allow the researchers to account for individual differences in preexisting interest and background factors, such as gender and ethnicity, and to measure changes in dispositions toward STEM. By better understanding these connections, practitioners can better understand how the design of their programs may influence the outcome of the participants' experience, including their education and career decisions.
DATE: -
TEAM MEMBERS: Deborah Moroney Neil Naftzger Lee Shumow Jennifer Schmidt
resource project Public Programs
Pipeline for Remote Sensing Education and Application (PRSEA), will increase awareness, knowledge and understanding of remote sensing technologies and associated disciplines, and their relevance to NASA, through a combination of activities that build a “pipeline” to STEM and remote sensing careers, for a continuum of audiences from third grade through adulthood. This program will be led by Pacific Science Center. The first objective is to engage 50 teens from groups underrepresented in STEM fields in a four-year career ladder program; participants will increase knowledge and understanding of remote sensing as well as educational pathways that lead to careers in remote sensing fields at NASA and other relevant organizations. The second objective is to serve 2,000 children in grades 3-5, in a remote sensing-based out-of school time outreach program that will increase the participant’s content knowledge of remote sensing concepts and applications and awareness and interest in remote sensing disciplines. PRSEA’s third objective is to engage 180 youth, grades 6-8, in remote sensing-themed summer intensive programs through which youth will increase knowledge of remote sensing concepts and applications and increase awareness and interest in educational and career pathways associated with remote sensing and NASA’s role in this field. The final objective is to engage 10,000 visitors of all ages with a remote sensing-themed Discovery Cart on Pacific Science Center’s exhibit floor. By engaging in cart activities, we anticipate visitors will increase their level of awareness and interest in the topic of remote sensing and NASA’s role in contributing to this field.
DATE: -
TEAM MEMBERS: Ellen Lettvin
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project will develop and research an integrated children's media and early childhood educator professional development strategy to prepare preschoolers with social-emotional skills that provide a foundation for later math learning success. The social-emotional skills include persistence, risk-taking, regulating anxieties, and collaborating to solve problems. Media components include Peg+Cat television episodes, videos, games and apps distributed through PBS broadcast and online. The integrated professional development model is designed to impact these educators' understanding of math and develop their skills for fostering in children a positive math mindset. Additional resources include a new Peg+Cat summer day camp at the Carnegie Science Center in Pittsburgh. The project partners include a media company, The Fred Rogers Company; researchers at the University of Pittsburgh and St. Vincent College; and the evaluator, Rockman et al. This project is unique in its focus on integrating social-emotional skills with early math learning and educator skill development. It will fill an important niche in the research literature and has the potential to impact media practice which is undergoing significant change as new digital tools and technologies become available for learning. Both standardized and researcher-developed measures will be used to assess learning outcomes, including early childhood educators' attitudes and quality of instruction, as well as children's interest and engagement in math. The research design includes iterative data collection to inform the development and refinement of the professional learning for teachers. The mixed methods approach will include classroom observations, interviews and focus groups with educators, and parent questionnaires. Key questions include: does exposure to Peg+Cat positively relate to children's use of social-emotional skills during math learning activities? Does educators' exposure to the professional development training improve their attitudes and abilities to infuse math instruction with social-emotional skills? Does having an educator who received Peg+Cat training impact children's engagement and interest in math?
DATE: -
TEAM MEMBERS: Mallary Swartz Junlei Li Shannon Wanless
resource project Public Programs
Over 200 zoos and aquariums in North America are accredited members of the Association of Zoos & Aquariums (AZA), with a shared vision of the future: a world where all people respect, value and conserve wildlife and wild places. Through programs & experiences that reach millions of people each year, we hope to encourage caring and empathy towards all living things, but we lack the tools that are needed to assess whether – and how – we’re reaching this goal. The overall goal of this 2 year collaborative project is to create tools that zoos and aquariums can use to assess whether they’re meeting their goal of encouraging caring and empathy towards wildlife. Project partners (Woodland Park Zoo, Point Defiance Zoo & Aquarium, & Seattle Aquarium) aim to develop, test and share tools that can be used by accredited zoos & aquariums to assess whether their educational programs are having the desired impact of encouraging children’s empathy towards animals. To better inform our understanding of the empathic experience and the role it plays in human relationships with animals, an advisory team comprised of conservation psychologists and evaluation practitioners in the zoo and aquarium field, has been formed to aid in this two year project.
DATE: -
resource project Public Programs
The integration of research with education and outreach is an essential aspect of our Center's mission. In order to assure the most effective use of our expertise and resources, we have developed a multi-faceted approach with activities that focus on coherent themes that address our three primary audiences: research community, our neighborhood, and the general public. These activities include research internships, enrichment programs for students & teachers, and informal science opportunities.
DATE: -
TEAM MEMBERS: Eileen Sheu
resource project Public Programs
The UMN MRSEC conducts an ambitious and multi-faceted education and outreach program to extend the impact of the Center beyond the university, providing undergraduates, college faculty, high school teachers, and K-12 students with opportunities that augment their traditional curriculum and increase their appreciation of materials science and engineering (MS&E). Our summer research program provides high-quality research and educational experiences in MS&E to students and faculty, drawn primarily from undergraduate institutions with limited research opportunities, while placing a strong emphasis on inclusion of women and members of underrepresented groups.
DATE: -
TEAM MEMBERS: Phil Engen
resource project Media and Technology
Xraise provides experiences that empower individuals by making science familiar and accessible. Immersed with scientists themselves, we facilitate hands-on, minds-on activities that involve the direct exploration of physics phenomena. Our relationship with K12 students, educators and community partners provides us with a platform for exploring personal intuitions, developing understandings and fostering excitement in science.
DATE: -
TEAM MEMBERS: Lora Hine Erik Herman