Skip to main content

Community Repository Search Results

resource project Public Programs
This award was provided as part of NSF's Social, Behavioral and Economic Sciences Postdoctoral Research Fellowships (SPRF) program and is supported by SBE's Developmental Sciences program and the Directorate for Education and Human Resources' (EHR) Advancing Informal STEM Learning program. The goal of the SPRF program is to prepare promising, early career doctoral-level scientists for scientific careers in academia, industry or private sector, and government. SPRF awards involve two years of training under the sponsorship of established scientists and encourage Postdoctoral Fellows to perform independent research. NSF seeks to promote the participation of scientists from all segments of the scientific community, including those from underrepresented groups, in its research programs and activities; the postdoctoral period is considered to be an important level of professional development in attaining this goal. Each Postdoctoral Fellow must address important scientific questions that advance their respective disciplinary fields. Under the sponsorship of Dr. Sandra D. Simpkins at the University of California, Irvine, this postdoctoral fellowship award supports an early career scientist exploring high-quality and culturally responsive, math afterschool program (ASP) practices for under-represented minority (URM) youth. Mathematical proficiency is the foundation of youth's STEM pursuits. Yet today, far too many youth do not pursue STEM based on a perception that they are "not good at math". Students need to engage in contexts that spark their interest and their continued mastery and growth. ASPs are settings for such dynamic opportunities, particularly for URM students such as Latinos who attend lower quality schools and do not feel supported. In college, URM students often struggle with uninspiring and culturally incongruent STEM learning environments. The intergenerational nature of university-based STEM ASPs, whereby younger students are paired with undergraduate (UG) mentors, are opportunities to support both K-12 and UG students' motivational beliefs in math and STEM more broadly. This project will examine these intergenerational developmental processes in the context of a math enrichment ASP located at a Hispanic-Serving Institution. By studying how ASPs can serve as an important lever for promoting URM students' access and success in STEM, this project seeks to meaningfully inform efforts to broaden the participation of underrepresented groups in these fields.

This project seeks to understand how participating in a math enrichment ASP supports both youth participants' and UG mentors' motivational beliefs in math; to describe high-quality and culturally responsive practices; and to understand how to support the effectiveness of youth-staff relationships. To accomplish these research objectives, data will be collected from both youth participants and UG mentors through multiple methods including surveys, in-depth interviews, participant-observations, and video observations of youth-staff interactions. This project will add to our understanding of university-ASP partnerships. Further, the knowledge gained from this study will impact the larger landscape of practice and research on STEM ASPs by 1) addressing critical gaps in the current literature on high-quality and culturally responsive STEM ASP practices and 2) informing ASP staff development training. Overall, this mixed methods project will provide critical and rich information on the ways that ASPs can effectively deliver on its promise of promoting positive development for all youth, especially URM youth who may need and benefit from these spaces the most. The invaluable insight garnered from this study will be disseminated to traditional academic audiences to advance knowledge, as well as to local, state, and national organizations to inform the larger landscape of practice in STEM ASPs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mark Vincent Yu Sandra Simpkins
resource project Public Programs
Informal STEM education needs high quality program evaluation. Research is particularly needed on the relationship between STEM outcomes and positive youth development (PYD) / socio-emotional learning (SEL). This pilot and feasibility project involves a collaboration between experts in STEM education, out-of-school time programs (OST), PYD, SEL, evaluation, and program development. STEM Scouts helps youth grow in character and develop skills using experiential activities and interaction with STEM professionals. This project expands the implementation of the Systems Evaluation Protocol (SEP), an evidence-based approach to evaluation planning.

The goals are to: 1) develop a theory of change for STEM Scouts highlighting the relationship between STEM outcomes and PYD/SEL outcomes; 2) pilot enhancements to the SEP (System Mapping, Ecosystem Modeling, and Model Validation); and, 3) determine the feasibility of conducting a national STEM Scouts study. STEM Scouts leadership and project researchers will work through the SEP to generate a stakeholder map, logic model, and pathway model (PM). Five STEM Scouts Labs across the country will participate in focus groups where they will complete SM to identify the system in which the Lab exists (e.g., stakeholders and decision-makers), review and revise their system maps, identify key outcomes and connections in the PM, and discuss how the PM reflects their STEM Scouts experiences. It is hypothesized the enhanced SEP will enable the working group to better understand factors hindering or enabling program and evaluation feasibility and success. Findings will be disseminated to the evaluation/research community, OST program providers/developers and the public.

This project is funded by the National Science Foundation's Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Jennifer Urban Miriam Linver
resource project Public Programs
This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The project will research the educational impact of social robots in informal learning environments, with applications to how social robots can improve participation and engagement of middle-school girls in out-of-school computer science programs in under-resourced rural and urban areas. The use of robots to improve STEM outcomes has focused on having learners program robots as tools to accomplish tasks (e.g., play soccer). An alternate approach views robots as social actors that can respond intelligently to users. By designing a programmable robot with social characteristics, the project aims to create a culturally-responsive curriculum for Latina, African American, and Native American girls who have been excluded by approaches that separate technical skill and social interaction. The knowledge produced by this project related to the use and benefits of social programmable robots has the potential to impact the many after-school and weekend programs that attempt to engage learners in STEM ideas using programmable robot curricula.

The project robot, named Cozmo, will be programmed using a visual programming language and will convey emotion with facial expressions, sounds, and movements. Middle school girls will engage in programming activities, collaborative reflection, and interact with college women mentors trained to facilitate the course. The project will investigate whether the socially expressive Cozmo improves computer science outcomes such as attitudes, self-efficacy, and knowledge among the middle school female participants differently than the non-social version. The project will also investigate whether adding rapport-building dialogue to Cozmo enhances these outcomes (e.g., when a learner succeeds in getting Cozmo to move, Cozmo can celebrate, saying "I can move! You're amazing!"). These questions will be examined research conducted with participants in multi-session after-school courses facilitated by Girl Scout troops in Arizona. The project will disseminate project research and resources widely by sharing research findings in educational and learning science journals; creating a website with open source code for programming social robots; and making project curriculum and related guidelines available to Girl Scouts and other educational programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Amy Ogan Erin Walker Kimberly Scott
resource project Afterschool Programs
“Tinkering EU: Building Science Capital for All” aims to develop activities and resources that support a learner-centred culture, improve science education and develop 21st century skills - all of which are fundamental for active citizenship, employability, and social inclusion. To do this, it adopts ‘Tinkering’, an innovative pedagogy developed in the USA, which is used by museums, and has proven able to create a lifelong engagement with science for everyone. Tinkering works particularly well for people who argue that “they are not good at science” or are disaffected from any formal teaching and learning process. It can be a powerful tool to tackle disadvantage. The project integrates Tinkering into the school curriculum to develop the science capital of disadvantaged youth through the use of museums. It addresses students from 8 to 14 years old (primary and junior high schools).

Coordinator: National Museum of Science and Technology Leonardo da Vinci

Partners:
University of Cambridge – UK
NEMO Science Museum – The Netherlands
Science Gallery Dublin – Ireland
CosmoCaixa – Spain
Science Center Network – Austria
NOESIS – Greece
DATE: -
TEAM MEMBERS: MARIA XANTHOUDAKI
resource project Media and Technology
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.

In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).

Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
DATE: -
resource project Public Programs
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.

The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Katie Spellman Elena Sparrow Christa Mulder Deb Jones
resource project Websites, Mobile Apps, and Online Media
The intent of this five-year project is to design, deliver, and study professional development for Informal Science Learning (ISL) educators in the arena of equity-focused STEAM (Science, Technology, Engineering, Art, and Mathematics) teaching and learning. While the strategy of integrating art and science to promote interest, identity, and other STEM-related learning has grown in recent years, this domain is still nascent with respect to a guiding set of best practices. Through prior work, the team has developed and implemented a set of design principles that incorporate effective practices for broadening participation of girls in science via science-art integration on the topic of the biology, chemistry and optics of "Colors in Nature." The continued initiative would impact the ISL field by providing a mechanism for ISL educators in museums, libraries and after-school programs to adopt and implement these STEAM design principles into their work. The team will lead long-term (12-18 months) professional development activities for ISL educators, including: 1) in-person workshops that leverage their four previously developed kits; 2) online, asynchronous learning activities featuring interactive instructional videos around their STEAM design principles; 3) synchronous sessions to debrief content and foster communities of practice; and 4) guided design work around the development or redesign of STEAM activities. In the first four years of the project, the team will work with four core institutional partners (Sitka Sound Science Center, Sno-Isle Libraries, the Fairbanks North Star Borough School District after-school program, and the Pima County Public Library system) across three states (Alaska, Washington, and Arizona). In the project's later stages, they will disseminate their learning tools to a broad, national audience. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

The project has three main goals: (1) To support ISL educators in offering meaningful STEAM activities, (2) To create institutional change among the partner organizations, and (3) To advance the ISL field with respect to professional development and designing for STEAM Programming. The research questions associated with the professional development activities address the ways in which change occurs and focus on all three levels: individual, institutional, and the ISL field. The methods are qualitative and quantitative, including videotaped observations, pre and post interviews, surveys and analysis of online and offline artifacts. In addition, the project evaluation will assess the implementation of the project's professional development model for effectiveness. Methods will include observations, interviews, surveys and Website analytics and program data.
DATE: -
TEAM MEMBERS: Laura Conner Carrie Tzou Mareca Guthrie Stephen Pompea Blakely Tsurusaki Laura Oxtoby Perrin Teal-Sullivan
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The project will derive a nationwide online coaching/mentoring program for out of school educators in rural settings. The program builds on a Noyce Foundation pilot project. The issue to be addressed is that educators in rural settings are challenged in a multitude of ways due to isolation. This project will try to find ways to alleviate some of the consequences of isolation through resource sharing, knowledge sharing, and unique techniques for communicating with students. Partners in this effort are the Maine Mathematics and Science Alliance, the National AfterSchool Association, Development Without Limits, and the Maine State Library.

By using widely-available technologies, this project will bring fully online instructional coaching in STEM to out-of-school educators who live too remotely to attend ongoing in-person workshops. The project team will achieve this by adapting a highly promising coaching program where groups of educators video-record their own work with youth, practice key skills, and meet regularly to discuss their work. The project will: (a) test technical challenges to achieve fully virtual implementation; (b) design and adapt a specific STEM-skill curriculum to align with different levels of need; (c) customize the model to work with rural librarians; and (d) integrate the work into existing state and national accreditation systems.
DATE: -
TEAM MEMBERS: Sue Allen
resource project Public Programs
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This Change Makers project will establish Food Justice Ambassador corps across three cities in Massachusetts where youth will install, manage and learn the science and technology underlying hydroponics. The project takes a near-peer mentoring approach that empowers high school youth to take the lead in improving ethnic minority and low-income residents' access to healthy produce and to help educate middle school youth regarding the value of fresh produce in one's diet by learning the science of hydroponics. Youth will create story maps to visualize food accessibility in their communities. High school youth will work with their communities to establish hydroponic farms in middle school after-school settings. The food that is grown will be provided to the community through farmers' markets. Youth will share their work with a larger community of urban farmers at the Massachusetts Urban Farming Conference. This project seeks to understand the contribution on youth development by the model's three components: (1) STEM learning embedded in a social justice framework, (2) near-peer mentoring, and (3) youth purpose and career development. This will enable researchers to better understand how the project enables youth to learn STEM skills; apply them to a real life problem; learn the relevance of STEM skills for addressing personal, career aspiration, and social justice issues; develop a sense of purpose and aspirations related to STEM fields; and mentor other youth through the same process. The project will use a mixed-method, multi-site longitudinal study utilizing quantitative surveys, structural equation modeling, and qualitative interviews to study the intersections of the components of the project. As such, the study will address three key questions: 1) How do youth and mentors perceive and experience their roles as participants in the pedagogy? 2) What is the impact of the intervention on youth' sense of purpose, identity, career adaptability, work volition, critical consciousness, school engagement, STEM interests, and STEM intentionality? 3) What is the contribution of relational/mentoring and psychosocial/career adaptability aspects of the youths' contexts on their capacity to benefit from this program and to develop and sustain purpose and engagement in school and STEM? Most urban youth (and adults) have little knowledge of where their food comes from and have limited opportunities to learn how to grow produce as well as develop related skills that can lead to a career in a STEM field. This is particularly disconcerting as 55% of African Americans live inside central cities (90% in metropolitan areas) and over half of all Latino/as live in central cities (United States Census Bureau, 2011). This project entails the recruitment of low-income youth from populations underrepresented in science into a program where social justice concerns (food justice, food security) are illuminated, analyzed, and acted upon through the development of STEM knowledge and skills. Specifically, this project recognizes the potential for urban youth to become deeply knowledgeable citizens who can mobilize their STEM knowledge and skills to resolve social injustices such as food deserts. If successful, this project will provide a model that should be transferable to similar contexts to help broaden participation in STEM.
DATE: -
TEAM MEMBERS: George Barnett Belle Liang David Blustein
resource project Media and Technology
As a part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings. This Broad Implementation project would scale up the CryptoClub Project, an afterschool and online program designed to engage middle school youth in mathematics and cryptography. The project builds on previous successful work and evaluation that is ready for scale up using a train-the-trainer model implemented through a partnership with the National Girls Collaborative. The project will train 160 new CryptoClub leaders who will then train 800 new leaders at 20 hub sites reaching 9600 students. In addition, professional development modules and webinars will continue to refresh leader skills. Other project components include an online multiplayer cryptography game, weekly challenges through social media, and digital cryptology badges for students.

The research uses a think-aloud method with students as they actually attempt to solve the cryptology problems using mathematical thinking. Three think-aloud studies will be performed during the Project. The research team will code transcripts of the interviews for evidence of the mathematical thinking intended to be addressed by each activity, as well as capturing unexpected kinds of thinking. Tasks will also be rated according to the type of knowledge elicited. A written report will include statistical analyses of the think-aloud and interview responses, interpreted in light of the overall CryptoClub goals. The findings will contribute to both future research efforts and practice. The evaluation by EDC uses a quasi-experimental design, which assesses project outcomes for trainers, leaders, students, and Internet users. EDC will also investigate the fidelity to the CryptoClub model as it is scaled up. These studies have strong potential for informing numerous other projects that are at a stage where scale up is under consideration.
DATE: -
TEAM MEMBERS: Janet Beissinger
resource project Media and Technology
Co-led by the University of Washington and Science Gallery Dublin, this project aims to drive and transform the next generation of broadening participation efforts targeting teen-aged youth from communities historically underrepresented in STEM fields. This project investigates how out-of-school time (OST) programs that integrate epistemic practices of the arts, sciences, computer science, and other disciplines, in the context of consequential activities (such as creating radio segments, designing museum exhibitions, or building online games), can more broadly appeal to and engage youth who do not already identify as STEM learners. STEM-related skills and capacities (such as computational thinking, design, data visualizations, and digital storytelling) are key to productive and creative participation in many future civic and workplace activities, and are driving the 30 fastest-growing occupations in the US. But many new jobs will entail a hybrid blend of skills, such as programming and design skills that many students who have disengaged with academic STEM pathways may already have and would be eager to develop further. There is not currently a strong foundation of research-based evidence to guide the design, implementation, and evaluation transdisciplinary programs - in which STEM skills are embedded as tools for meaningful participation - or how such approaches relate to long-term outcomes. Hypothesizing that OST programs which effectively engage youth during their high-leverage teenage years can significantly impact youths' longer-term STEM learning trajectories, this project will involve: 1) Five 3-year studies documenting learning in different technology-rich contexts: Making Afterschool, Media Production, Museum Exhibition Design, Digital Arts Programs, and Pop-Up/Street Science Programs; 2) A 4-year longitudinal study, involving 100 youth from the above programs; 3) The creation of a number of practical measurement tools that can be used to monitor how programs are leveraging the intersections of the arts and sciences to support student engagement and learning; and 4) A Professional Development program conducted at informal science education conferences in the EU and US to engage the informal STEM field with emerging findings. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences to better understand, strengthen, and coordinate STEM engagement and learning. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments.

Transdisciplinary, equity-oriented OST programs can provide supportive social contexts in which STEM concepts and practices are taken up as the means for meaningful participation in valued activities, building students' STEM skills in ways that can propel their future academic, career, and lifelong learning choices. This project will build the knowledge base about these emerging 21st century transdisciplinary approaches to broadening participation investigating: 1) The epistemic intersections across a range of disciplines (art, science, computation, design) that operate to broaden appeal and meaningful participation for underrepresented youth; 2) How transdisciplinary activities undertaken in the context of consequential learning (e.g., producing a radio segment, designing an exhibition for the general public) can illuminate the relevance of STEM to young people's lives, concerns, and futures; and 3) How participation in such programs can propel students' longer-term life choices and STEM learning trajectories. The project is a collaboration of the University of Washington, Science Gallery Dublin, Indiana University, Youth Radio in Oakland California, Guerilla Science in New York and London, and the London School of Economics.
DATE: -
resource project Media and Technology
This Research in Service to Practice project, a collaboration of Pepperdine University and the New York Hall of Science, will establish a network of STEM-related Media Making Clubs comprised of after-school students aged 12 - 19 and teachers in the U.S. and in three other countries: Kenya, Namibia and Finland. The media produced by the students may include a range of formats such as videos, short subject films, games, computer programs and specialized applications like interactive books. The content of the media produced by the students will focus on the illustration and teaching of STEM topics, where the shared media is intended to help other students become enthused about and learn the science. This proposal builds on the principal investigator's previous work on localized media clubs by now creating an international network in which after-school students and teachers will collaborate at a distance with other clubs. The central research questions for the project pertain to three themes at the intersection of learning, culture and collaboration: the impact of participatory teaching, virtual networks, and intercultural, global competence. The research will combine qualitative, cross-cultural and big data methods. Critical to the innovation of the project, the research team will also develop a network assessment tool, adapting epistemic network analysis methods to the needs of this initiative. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Eric Hamilton Katherine McMillan Priya Mohabir