Skip to main content

Community Repository Search Results

resource project Media and Technology
The New England Aquarium will create Conservation STEM — an online curriculum that features engaging videos and hands-on activities aligned with state and national standards that are easily accessible for teachers to use in the classroom. The project responds to a need that the aquarium’s Teacher Advisory Council — composed of Pre-K through 12 teachers from the greater Boston area — identified, which was to help students develop critical and systems thinking skills. It also will provide a means for teachers to engage students with authentic experiences to address real-world problems and build an understanding of the need for a balanced use of the ocean.
DATE: -
TEAM MEMBERS: Leigh Clayton
resource project Media and Technology
The Harvard Museums of Science and Culture will improve the ability of middle school teachers to use museum-based digital resources to support classroom instruction aligned with state and national science standards. Working with advisory teachers from five collaborating school districts, the museum will co-create classroom activities, based on digital resources from its collections, along with associated teacher professional development programs at three sites across urban and rural Massachusetts. The project will provide schools with access to classroom-ready resources that successfully support student learning. Teachers will learn how to use these materials, integrate them into their teaching, and enhance their skills to teach science content and practice. External evaluators will assess the project's effectiveness by measuring teacher implementation of the digital resources in the classroom, requests for information and assistance, and changes in teachers' confidence and comfort levels.
DATE: -
TEAM MEMBERS: Wendy Derjue-Holzer
resource project Media and Technology
It is estimated that over 95% of all school children across the country are out of the classroom due to social distancing mandates in response to the COVID-19 pandemic. Almost overnight, families have had to develop and support new practices for learning at home as districts scramble to meet the academic, social and emotional needs of their communities. It is essential to collect data now to develop a deeper understanding of how schools and families are adapting to these changes and will continue to do so in coming weeks/months - the troubles they encounter, and the solutions they generate. Retrospective accounts may mask critical features of what was experienced, minimizing the country’s capacity to conceptualize and build more robust, equitable and transformative learning ecologies for the future. Emphasizing an equity approach to solution development, this research will document how families engage in creative practices to generate powerful learning based on local needs, values, contexts, and histories in this present crisis. It will address the following questions: (1) What resources are schools providing and how are parents navigating and extending these resources to sustain their child’s learning? (2) How are families exploring science and math concepts related to the pandemic? (3) How are parents and families learning to adapt (e.g. communication with teachers; broader social networks) and what challenges do they face (e.g. subscription costs; reliable Internet)? (4) How are digital resources for STEM, curated by the research team, utilized for learning?

Emergency school closures are exposing significant gaps in access to the Internet and communication devices, and the capacity of parents/caregivers and communities to capitalize on technology to sustain health-relevant learning in a time of crisis. This project will use a novel, remote-diary tool based on a smartphone-enabled data collection platform, to reach families across the country. Mobile-phone-enabled remote diary tools make it possible to reach families who are under-connected, not just those with robust technical infrastructure. The data collected will lay the groundwork for creating new socio-technical support systems informed by diverse families’ experiences, as the crisis unfolds. Approximately 200 parents with school age children (early and upper elementary grades) living at home will be recruited. This study and a subsequent virtual workshop with other researchers who are also using remote methods to study learning will help establish a broader research agenda to specify the conditions under which socio-technical systems productively augment a family’s capacity to innovate and learn when traditional co-located school settings disappear. It will advance our understanding of how human learning adapts to unexpectedly changed learning environments. This study draws on advances in remote data collection and new analytical tools for innovation in research design.
DATE: -
TEAM MEMBERS: Brigid Barron
resource research Media and Technology
To engage parents and young children in exploring science together, media producers from WGBH (Boston’s public media station) and researchers from Education Development Center (EDC) collaborated with two home-visiting organizations—Home Instruction for Parents of Preschool Youngsters (HIPPY USA) and AVANCE—to design and test PEEP Family Science, an app-based intervention with science-focused digital media resources and associated supports for diverse, low-income families. Both organizations target families whose children do not attend preschool. These home visiting organizations play a unique
DATE:
TEAM MEMBERS: Jennifer Stiles Megan Silander
resource project Media and Technology
Production of an augmented reality app for the Cahokia Mounds historic site and a complementary website.

This project is to produce an augmented reality application for Cahokia Mounds State Historic Site. This experience will enable visitors to see structures, people, and other features of this ancient site through the lens of their smartphone or tablet. There will be extra audio and vision opportunities loaded to the experience as well as a complementary website. The website will include curriculum for school use. Cahokia Mounds State Historic Site is a UNESCO World Heritage and US National Historic Landmark. This project will greatly enhance the visitor's experience and bring awareness of the site.
DATE: -
TEAM MEMBERS: Jack Kerber
resource project Informal/Formal Connections
Mentoring is a widely accepted strategy for helping youth see how their interests and abilities fit with education and career pathways; however, more research is needed to better understand how different approaches to mentoring impact youth participants. Near-peer mentoring can be a particularly impactful approach, particularly when youth can identify with their mentors. This project investigates three approaches to near-peer mentoring of high-school-aged Hispanic youth by Hispanic undergraduate mathematics majors. Mentoring approaches include undergraduates' visits to high school classrooms, mathematics social media, and a summer math research camp. These three components of the intervention are aimed at facilitating enjoyment of advanced mathematics through dynamic, experiential learning and helping high school aged youth to align themselves with other doers of mathematics on the academic stage just beyond them, i.e., college.

Using a Design-Based Research approach that involves mixed methods, the research investigates how the three different near-peer mentoring approaches impact youth participants' attitudes and interests related to studying mathematics and pursuing a career in mathematics, the youth's sense of whether they themselves are doers of mathematics, and the youth's academic progress in mathematics. The project design and research study focus on the development of mathematical identity, where a mathematics identity encompasses a person's self-understanding of himself or herself in the context of doing mathematics, and is grounded in Anderson (2007)'s four faces of identity: Engage, Imagine, Achieve, and Nature. The study findings have the potential to uncover associations between informal interactions involving the near-peer groups of high school aged youth and undergraduates seen to impact attitudes, achievement, course selection choices, and identities relative to mathematics. It also responds to an important gap in current understandings regarding effective communication of mathematics through social media outlets, and results will describe the value of in-person mathematical interactions as well as online interactions through social media. The study will result in a model for using informal near-peer mentoring and social media applications for attracting young people to study and pursue careers in STEM. This project will also result in a body of scripted MathShow presentations and materials and Math Social Media content that will be publicly available to audiences internationally via YouTube and Instagram.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Aaron Wilson Sergey Grigorian Xiaohui Wang Mayra Ortiz
resource project Media and Technology
Research shows that algebra is a major barrier to student success, enthusiasm and participation in STEM for under-represented students, particularly African-American students in under-resourced high schools. Programs that develop ways to help students master algebra concepts and a belief that they can perform algebra may lead to more students entering engineering careers. This project will provide an online engineering program to support 9th and 10th grade Baltimore City Public Schools students, a predominantly low-income African-American cohort, to develop concrete goals of becoming engineers. The goals of the program are to help students with a growing interest in engineering to maintain that interest throughout high school. The project will also support students aspire to an engineering career. The project will develop in students an appreciation of requisite courses and skills, and increase self-efficacy in mathematics. The project will also develop a replicable model of informal education capable of reinforcing the mathematical foundations that students learn during the school day. Additionally, the project will broaden participation in engineering by being available to students during out-of-school time and by having relaxed entrance criteria compared to existing opportunities in supplemental engineering curricula. The project is a collaboration between the Baltimore City Public Schools, Johns Hopkins University Applied Physics Laboratory, Northrop Grumman Corporation, and Expanded School-Based Mental Health programs to support students both during and after participation. The project will benefit society by providing skills that will allow high school students to become members of tomorrow's highly trained STEM workforce.

The research will test whether an informal, scaffolded online algebra-for-engineering program increases students' mastery and self-efficacy in mathematics. The research will advance knowledge regarding informal education by applying Social Cognitive Career Theory as a framework for measuring program impact. The theoretical framework will aid in identifying mechanisms through which students with interest in engineering might persist in maintaining this interest through high school via algebra skill mastery and increased self-efficacy. The project will recruit 200 youth from the Baltimore City Public Schools to participate in the project over three years. Qualitative data will be collected to assess how student and school socioeconomic factors impact implementation, student engagement, and outcomes. The research will answer the following questions: 1) What effect does program participation have on math mastery? 2) What direct and indirect effects do program completion and supports have on students' mathematics self-efficacy? 3) What direct and indirect effects do program components have on engineering career goals by the end of the program? 4) What direct and indirect effects does math self-efficacy have on career goals? 5) To what extent are the effects of program participation on engineering career goals mediated by math self-efficacy and engineering interest? 6) How do school factors relate to the implementation of the program? 7) What socioeconomic-related factors relate to the regularity and continuation of student participation in the program? The quantitative methods of data analysis will employ descriptive and multivariate statistical methods. Qualitative data from interviews will be analyzed using an emergent approach and a coding scheme guided by theoretical constructs. Project results will be communicated to scholars and practitioners. The team will also share information through school newsletters and parent communication through Baltimore City Public Schools.

This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michael Falk Christine Newman Rachel Durham
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project would expand the informal STEM learning field's understanding of how to use digital science media to increase STEM educational experiences and opportunities for English language learners. Across the U.S. there are significant STEM opportunity and achievement gaps for English learners with varying levels of English proficiency. This is at a time when the U.S. is facing a shortage of STEM professionals in the workforce including the life and physical science fields. This project aims to close these gaps and improve English learners' STEM learning outcomes using digital media. Within community colleges, there are multiple site-based programs to provide content to help English learners to learn English and to improve their math and literacy skills. Involving the state community college networks is a critical strategy for gathering important feedback for the pedagogical approach as well as for recruiting English learner research participants. The team will initially study an existing YouTube chemistry series produced by Complexly then produce and test new videos in Spanish using culturally relevant instructional strategies. The target audience is 18-34-year-old English learners. Project partners are Complexly, a producer of digital STEM media and EDC, a research organization with experience in studying informal STEM learning.

The project has the potential to advance knowledge about the use of culturally relevant media to improve STEM opportunities and success for English language learners. Using a Design-Based Implementation Research framework the research questions include: 1) what are the effective production and instructional strategies for creating digital media to teach science to English learners whose native language is Spanish? 2) what science content knowledge do English learners gain when the project's approach is applied to a widely available set of YouTube videos? and 3) how might the findings from the research be applied to future efforts targeting English learners? The project has the potential to significantly broaden participation in science and engineering. Phase 1 of the research will be an exploration of how to apply strategic pedagogical approaches to digital media content development. Interviews will be conducted with educators in 3 focal states with high numbers of English language learners (NY, CA, TX) to reflect on pedagogical foundations for teaching science to English learners. A survey of 30 English learners will provide feedback on the perceived strengths and weaknesses of a selection of existing YouTube chemistry videos. Phase 2 will create/test prototypes of 6 adapted chemistry videos. Forty students (ages 18-34) will be recruited and participate in cognitive interviews with researchers after viewing these videos. Based on this input additional videos will be produced with revised instructional strategies for further testing. Additional rounds of production and testing will be conducted to develop an English learners mini chemistry series. Phase 3 will be a pilot study to gauge the science learning of 75 English learners who will view an 11-episode chemistry miniseries. It will also identify gaps in expected learning to determine whether any further adjustments are necessary to the instructional approach.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Kelsey Savage Ceridwen Riley Stan Muller Heather Lavigne Caroline Parker Katrina Bledsoe
resource research Media and Technology
Communication is an essential component to scientific inquiry, and specifically the primary literature is highly valued by scientists. Yet, the role of primary literature within scientific inquiry is generally absent from the science classroom. In this study we examined how middle and high school student perceptions of scientific inquiry changed after they engaged in a peer-review and publication process of their research papers. We interviewed twelve students who published their papers in the [Journal], a science journal dedicated to publishing the research of middle and high school students
DATE:
TEAM MEMBERS: Sarah Fankhauser Gwendolynne Reid Gwendolyn Mirzoyan Clara Meaders Olivia Ho-Shing
resource project Media and Technology
For public health to improve, all sectors of society much have access to the highest quality health science news and information possible. How that information is translated, packaged and disseminated is important: the stories matter. Our journalism and mentoring program will grow the health science literacy of the nation by building the next generation of science communicators, ensuring that cadre of youth from historically disadvantaged groups have the discipline, creativity and critical thinking skills needed to be successful health science-literate citizens and advocates within their own communities.

Using a combination of youth-generated videos, broadcast reporting and online curriculum resources, PBS NewsHour will engineer successful educational experiences to engage students from all backgrounds, and particularly underserved populations, to explore clinical, biomedical, and behavioral research. The PBS NewsHour’s Student Reporting Labs program, currently in 41 states, will create 10 health science reporting labs to produce unique news stories that view health and science topics from a youth perspective. We will incorporate these videos into lesson plans and learning tools disseminated to the general public, educators and youth media organizations. Students will be supported along the way with curricula and mentorship on both fundamental research and the critical thinking skills necessary for responsible journalism. This process will ensure the next generation includes citizens who are effective science communicators and self-motivated learners with a deep connection to science beyond the textbook and classroom.

PBS NewsHour will develop a STEM-reporting curriculum to teach students important research skills. The program will include activities that expose students to careers in research, highlight a diverse assortment of pioneering scientists as role models and promote internship opportunities. The resources will be posted on the PBS NewsHour Extra site which has 170,000 views per month and our partner sites on PBS Learning Media and Share My Lesson—the two biggest free education resource sites on the web—thus greatly expanding the potential scope of our outreach and impact.

NewsHour broadcast topics will be finalized through our advisory panel and the researchers interviewed for the stories will be selected for their expertise and skills as effective science communicators, as well as their diversity and ability to connect with youth. Finally, we will launch an outreach and community awareness campaign through strategic partnerships and coordinated cross promotion of stories through social media platforms.
DATE: -
TEAM MEMBERS: Patti Parson Leah Clapman
resource project Media and Technology
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.

The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harry Mairson
resource project Informal/Formal Connections
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This project examines the conditions in which families and young learners most benefit from "doing science and math" together among a population that is typically underserved with respect to STEM experiences--families experiencing poverty. This project builds on an existing program called Teaching Together that uses interactive parent-child workshops led by a museum educator and focused on supporting STEM learning at home. The goal of these workshops is to increase parents'/caregivers' self-perception and ability to serve as their child's first teacher by supporting learning and inquiry conversations during daily routines and informal STEM activities. Families attend a series of afternoon and evening workshops at their child's preschool center and at a local children's museum. Parents/Caregivers may participate in online home learning activities and museum experiences. The project uses an experimental design to test the added value of providing incremental supports for informal STEM learning. The study uses an experimental design to address potential barriers parents/caregivers may perceive to doing informal STEM activities with their child. The project also explores how the quantity and quality parent-child informal learning interactions may relate to changes in children's science and mathematics knowledge during the pre-kindergarten year. The project partners include the Children's Learning Institute at the University of Texas Health Science Center at Houston and the Children's Museum of Houston.

The project is designed to increase understanding of how parents/caregivers can be encouraged to support informal STEM learning by experimentally manipulating key aspects of the broader expectancy-value-cost motivation theory, which is well established in psychology and education literatures but has not been applied to preschool parent-child informal STEM learning. More specifically, the intervention conditions are designed to identify how specific parent supports can mitigate potential barriers that families experiencing poverty face. These intervention conditions include: modeling of informal STEM learning during workshops to address skills and knowledge barriers; materials to address difficulties accessing science and math resources; and incentives as a way to address parental time pressures and/or costs and thereby improve involvement in informal learning activities. Intervention effects will be calculated in terms of effect sizes and potential mediators of change will be explored with structural equation modeling. The first phase of the project uses an iterative process to refine the curriculum and expand the collection of resources designed for families of 3- to 5-year-olds. The second phase uses an experimental study of the STEM program to examine conditions that maximize participation and effectiveness of family learning programs. In all, 360 families will be randomly assigned to four conditions: 1) business-as-usual control; 2) the Teaching Together core workshop-based program; 3) Teaching Together workshops + provision of inquiry-based STEM activity kits for the home; and 4) Teaching Together workshop + activity kits + provision of monetary incentives for parents/caregivers when they document informal STEM learning experiences with their child. The interventions will occur in English and Spanish. A cost analysis across the interventions will also be conducted. This study uses quantitative and qualitative approaches. Data sources include parent surveys and interviews, conversation analysis of home learning activities, parent photo documentation of informal learning activities, and standardized assessments of children's growth in mathematics, science, and vocabulary knowledge.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Tricia Zucker