Skip to main content

Community Repository Search Results

resource project Media and Technology
This Research in Service to Practice project, a collaboration of Pepperdine University and the New York Hall of Science, will establish a network of STEM-related Media Making Clubs comprised of after-school students aged 12 - 19 and teachers in the U.S. and in three other countries: Kenya, Namibia and Finland. The media produced by the students may include a range of formats such as videos, short subject films, games, computer programs and specialized applications like interactive books. The content of the media produced by the students will focus on the illustration and teaching of STEM topics, where the shared media is intended to help other students become enthused about and learn the science. This proposal builds on the principal investigator's previous work on localized media clubs by now creating an international network in which after-school students and teachers will collaborate at a distance with other clubs. The central research questions for the project pertain to three themes at the intersection of learning, culture and collaboration: the impact of participatory teaching, virtual networks, and intercultural, global competence. The research will combine qualitative, cross-cultural and big data methods. Critical to the innovation of the project, the research team will also develop a network assessment tool, adapting epistemic network analysis methods to the needs of this initiative. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Eric Hamilton Katherine McMillan Priya Mohabir
resource project Public Programs
This project by California State University San Marcos and their collaborators will expand and continue to innovate on a pilot Mobile Making program with the goal of developing a sustainable, regional model for serving underserved, middle-school aged youth in twelve after-school programs in the San Diego region. Evaluation of the current Mobile Making program has documented positive impacts on participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life, and led to a model for engaging underserved youth in Making. The work will focus on implementing the program model sustainably at greater capacity by increasing the number of undergraduate activity leaders, after-school sites, and level of community engagement. The expanded Mobile Making program is expected to engage ~1800 middle school youth at 12 local school sites, with activities facilitated by ~1020 undergraduate CSU-SM STEM majors. The sites are in ethnically diverse and economically disadvantaged neighborhoods, with as many as 90% of students at some sites qualifying for free or reduced price lunch. The undergraduate facilitators are drawn from CSU-SM's diverse student body, which includes 44% underrepresented minorities. Outcomes are expected to include increases in the youth participants' interest, self-efficacy, and perception of the relevance of Making/STEM in everyday life. Positive impacts on the undergraduate facilitators will include broadened technical skills, increased leadership and 21st century skills, and increased lifelong interest in STEM outreach/informal science education. The program is designed to achieve sustainability through innovative means such as involving undergraduate facilitators via Community Service Learning (rather than paid positions), and increased community engagement via development and support of a community of practice including local after-school providers, teachers, Makers, and University members. Evaluation of the program outcomes and lessons learned are expected to result in a comprehensive model for a sustainable, university-based after-school Making program with regional impact in underserved communities. Dissemination to other regions will be leveraged via CSU-SM's membership in the California State University (CSU) system, yielding a potential statewide impact. The support of the CSU Chancellor's Office and input from a CSU implementation group will ensure the applicability of the model to other regional university settings, identify common structural barriers and solutions, and increase the probability of secondary implementations. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Edward Price Charles De Leone
resource project Media and Technology
This project had three objectives to build knowledge with respect to advancing Informal STEM Education:


Plan, prototype, fabricate, and document a game-linked design-and-play STEM exhibit for multi-generational adult-child interaction utilizing an iterative exhibit design approach based on research and best practices in the field;
Develop and disseminate resources and models for collaborative play-based exhibits to the informal STEM learning community of practice of small and mid-size museums including an interactive, tangible tabletop design-and-play game and a related tablet-based game app for skateboarding science and technology design practice;
Conduct research on linkages between adult-child interactions and game-connected play with models in informal STEM learning environments.


Linked to these objectives were three project goals:


Develop tools to enable children ages 5-8 to collaboratively refine and test their own theories about motion by exploring fundamental science concepts in linked game and physical-object design challenge which integrates science (Newton’s Laws of Motion) with engineering (iterative design and testing), technology (computational models), and mathematics (predictions and comparisons of speed, distance, and height). [Linked to Objectives 1 & 3]
Advance the informal STEM education field’s understanding of design frameworks that integrate game environments and physical exhibit elements using tangibles and playful computational modeling and build upon the “Dimensions of Success” established STEM evaluation models. [Linked to Objectives 1 & 2]
Examine methods to strengthen collaborative learning within diverse families through opportunities to engage in STEM problem-based inquiry and examine how advance training for parents influences the extent of STEM content in conversations and the quality of interactions between caregivers and children in the museum setting. [Linked to Objectives 1 & 3]


The exhibit designed and created as a result of this grant project integrates skateboarding and STEM in an engaging context for youth ages 5 to 8 to learn about Newton’s Laws of Motion and connect traditionally underserved youth from rural and minority areas through comprehensive outreach. The exhibit design process drew upon research in the learning sciences and game design, science inquiry and exhibit design, and child development scholarship on engagement and interaction in adult-child dyads.

Overall, the project "Understanding Physics through Collaborative Design and Play: Integrating Skateboarding with STEM in a Digital and Physical Game-Based Children’s Museum Exhibit" accomplished three primary goals. First, we planned, prototyped, fabricated, and evaluated a game-linked design-and-play STEM gallery presented as a skatepark with related exhibits for adult-child interaction in a Children's Museum.

Second, we engaged in a range of community outreach and engagement activities for children traditionally underserved in Museums. We developed and disseminated resources for children to learn about the physics of the skatepark exhibit without visiting the Museum physically. For example, balance board activities were made portable, the skatepark video game was produced in app and web access formats, and ramps were created from block sets brought to off-site locations.

Third, we conducted a range of research to better understand adult-child interactions in the skatepark exhibit in the Children's Museum and to explore learning of physics concepts during physical and digital play. Our research findings collectively provide a new model for Children's Museum exhibit developers and the informal STEM education community to intentionally design, evaluate, and revise exhibit set-up, materials, and outcomes using a tool called "Dimensions of Success (DOS) for Children's Museum Exhibits." Research also produced a tool for monitoring the movement of children and families in Museum exhibit space, including time on task with exhibits, group constellation, transition time, and time in gallery. Several studies about adult-child interactions during digital STEM and traditional pretend play in the Museum produced findings about social positioning, interaction style, role, and affect during play.
DATE: -
TEAM MEMBERS: Deb Dunkhase Kristen Missall Benjamin DeVane