Skip to main content

Community Repository Search Results

resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource project Informal/Formal Connections
The "Salmon Research Team: A Native American Technology, Research and Science Career Exposure Program" is a three-year, youth-based ITEST project submitted by the Oregon Museum of Science and Industry. The project seeks to provide advanced information technology and natural science career exposure and training to 180 middle level and high school students. Mostly first-generation college-bound students, the target audience represents the Native American community and those with Native American affiliations in reservation, rural and urban areas. Students will investigate computer modeling of complex ecological, hydrological and geological problems associated with salmon recovery efforts. Field experiences will be provided in three states: Oregon, Washington and northern California. The participation of elders and tribal researchers will serve as a bridge between advanced scientific technology and traditional ecological knowledge to explore sustainable land management strategies. Students will work closely with Native American and other scientists and resource managers throughout the Northwest who use advanced technologies in salmon recovery efforts. Student participation in IT-dependent science enrichment and research activities involving natural science fields of investigation will occur year round. Middle school students are expected to receive at least 330 contact hours including a one-week summer research experience, a one-week spring break program, and seven weekends of residential programs during the school year. The high school component consists of 460 contact hours reflecting one additional week for the summer research experience. In addition to watershed and salmon recovery related research, students will be involved in other ancillary research projects. A vast array of partners are positioned to support the field research experience including, for example, the U.S. Department of the Interior, Redwood National State Park, College of Natural Resources and Sciences at Humboldt State University, Confederated Tribes of the Warm Springs, University of Oregon Institute of Marine Biology, University of Washington Columbia Basin Research project, the Northwest Center for Sustainable Resources at Chemeketa Community College and the Integrated Natural Resource Technology program at Mt. Hood Community College. The project is intended to serve as a model for IT-based youth science programs that address national and state education standards and are relevant to the cultural experience of Native American students. Two mentors will provide continued support to students: an academic mentor at the student's schools and a professional mentor from a local university or natural resource agency. Incentives will be provided for student participation including stipends and internships. Career exposure and work-related skills are integrated throughout the project activities and every program component. Creative strategies are used to encourage family involvement including, for example, salmon bakes and museum discounts.
DATE: -
TEAM MEMBERS: Travis Southworth-Neumeyer Daniel Calvert
resource project Public Programs
The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE: -
TEAM MEMBERS: Efi Foufoula-Georgiou Christopher Paola Gary Parker
resource project Public Programs
The "Environmental Science Information Technology Activities (ESITA)" based at the Lawrence Hall of Science (LHS) at UC-Berkeley is a three-year, youth-based proposal that seeks to engage 144 inner-city ninth and tenth graders in learning experiences involving environmental science and information technology. The goal of the project is to develop, field-test, and disseminate an effective student-centered, project-based model for increasing understanding and interest in information technology. Program components included an afterschool program, summer enrichment and an internship program. An extensive partnership involving community based agencies, environmental science organizations, a local high school and industry support the project by serving as host sites for the afterschool program and internship component. Student participation in project-based, IT-dependent research activities related to environmental science will occur year round. Students will research air and water quality in their local communities and study attitudes toward -- and use of -- information technology among their peers. The focus of the research activities is based on the results of a students-needs assessment. Students participate in the program over a two-year period and are expected to receive at least 240 total contact hours. The afterschool program serves as the project's principal mechanism for content delivery. The five-month afterschool program consists of inquiry-based mini-courses on the following topics: Information Technology tools and concepts, earth and physical science, data compilation and modeling, and publication of research results. The summer enrichment component encompasses a series of workshops at LHS; excursions to IT-related exhibits, environmental facilities, and IT-based companies; and an annual student robotics fair. During the second year of program participation students will complete 12-month internships to support the application of concepts and skills learned the first year. The LHS Student Geoscience Research Opportunities program will serve as a model host site for the program. Stipends are provided throughout the program to encourage student participation and retention.
DATE: -
TEAM MEMBERS: Kevin Cuff Marco Molinaro
resource project Public Programs
Community Science Workshops: Beginning a National Movement is an extension of a successful, NSF-funded project that created a network of community science centers in California. The San Francisco State University will now take this successful venture to a national level by working with the American Association for the Advancement of Science (AAAS) and Quality Education for Minorities (QEM) to establish a new Community Science Workshop (CSW) 8-10 in underserved communities over the next four years. Once sites are selected, CSW directors participate in an intensive two-week training program. This is followed by visits by site mentors, and ongoing support through the WWW and other media, which contributes to the establishment and eventual sustainability of the centers. Each site partners with larger, established museums and science centers locally to gain much needed assistance with exhibits and education programs. Community Science Workshops contain permanent exhibit space, a workshop area for student projects and classroom/storage space. They serve a variety of audiences through after school, family, school and summer science programs. Potential locations include Arizona, Florida, Louisiana, Michigan, Montana, Nebraska, New York, Tennessee, Texas, Washington and the District of Columbia.
DATE: -
TEAM MEMBERS: Paul Fonteyn Daniel Sudran
resource project Media and Technology
Thinking SMART is a comprehensive five-year program that will encourage young women to pursue careers in science, mathematics and technology. The project focuses on girls ages 12-18, and will especially target those who are underserved and underrepresented in the sciences, including girls from diverse backgrounds and persons with disabilities. Key elements include four science/engineering module options, a two-tiered mentoring component, training, resource materials, online activities and an awards program. The modules (Material Girls, Eco Girls, Galactic Girls, Net Girls), focus on engineering, ecology, physics and computer science respectively, and will be aligned with national standards. The modules are implemented during the school year and include weekly programming, a summer camp and a spring "Women in Science and Engineering" conference organized by girls. Weekly meetings are augmented by online activities, in which girls interact with other participants and mentors, publish reports and obtain career information. Additionally, participants who complete all four modules are eligible to become paid mentors for younger participants. Five publications will be produced to support the program, including manuals for mentors (both adults and youth), module activities, a parent guide and a guide for implementation sites on community partnerships. Thinking SMART materials will be developed and piloted tested at eight sites in conjunction with Girls, Inc. affiliates in Nashua, NH, Worcester, MA, Oakridge, TN and Shelbyville, IN, with input from the Society of Women Engineers. Extensive training will also be provided for pilot programs and future dissemination. Finally the E3 Awards Program will motivate implementation sites to create high quality local programs. It is anticipated that more than 1,500 Girls, Inc. affiliates will adopt "Thinking SMART."
DATE: -
TEAM MEMBERS: Brenda Stegall Janet Stanton Heather Johnston Nicholson Shalonda Murray Joe Martinez
resource project Public Programs
The Developmental Studies Center (DSC) will implement "Home, School and Community: AfterSchool Math for Grades 3-5," a program that targets at-risk and low income children in afterschool programs. AfterSchool Math trains youth workers to help students in grades 3-5 better understand measurement and geometry concepts, building on the success of the NSF-funded Home, School and Community mathematics program for grades K-2 (ESI #97-05421). The project develops, field-tests and evaluates thirty math games and ten story guides, which support the social and mathematical development of children, while emphasizing cooperative learning. The content for all materials will be aligned with national standards in mathematics. A 12-hour professional development workshop for youth workers and an 18-hour workshop for facilitators or youth worker leaders are also planned. Two training videos and a facilitator manual will be produced to support this aspect of the project. Field testing will occur in Kansas, Louisiana and Missouri. This proposal has been augmented to include a special emphasis on rural communities which doubles the number of field test sites from 50 to 100. A Rural Outreach Specialist will conduct focus group meetings to determine needs unique to rural programs and lead the field testing in these communities. It is anticipated that over 3,200 youth workers will be trained and a national cadre of more than 300 youth worker leaders will be created.
DATE: -
TEAM MEMBERS: Frank Snyder
resource project Media and Technology
WGBH is producing twelve quarterly television magazine-format programs devoted to the public understanding of current scientific research. The programs will consider the significant areas of on-going research, present the scientists who are conducting the research, portray research as an on-going endeavor and discuss the social impact and ethical implications of major areas of research. Each program will include segments such as the following: Research news update - (5 to 7 mins.) Feature stories about on-going research - 3 (8 to 12 min. each) In-studio discussions following many of the feature stories - ethical, policy and social implications Point/Counterpoint - 2 commentators presenting social, ethical, political and economic aspects of research "Then and Now" segments showing changing nature of scientific research In-studio demonstrations Interstitial moments -- Showcases of interesting and surprising aspects of research Close -- update stories from previous programs, read viewers' input or answer viewers' questions, preview upcoming story. In addition, WGBH will produce three one-hour "Year in Review" programs that report what major research has occurred over the past year and puts it in a context that will help viewers understand the role of current research in all aspects of life. Other major components of the project include on-going collaborations with other Public Understanding of Research Projects, an interactive web site, communication training for scientists to help them explain their work to the public, "Science Cafes" with on-going public programs about cutting-edge research in informal settings, a resource guide for teachers, "Leading Edge" articles in magazines targeted to teens, a "Leading Edge" science contest for students conducted through PBS stations and a station resource kit with information about how to establish local collaborations with researchers, science museums, schools and others.
DATE: -
TEAM MEMBERS: Paula Apsell Barbara Flagg
resource project Media and Technology
Screenscope, Inc. is producing three annual "state of the environment" reports. The reports will consist of a yearly, ninety-minute, prime-time public television program and an extensive outreach initiative to engage families and the public in a variety of educational activities. The television programs will: Present an up-to-date "state of the environment" assessment of ecosystem performance and human health; Feature the year's most important environmental incidents; Highlight the year's most cutting-edge scientific breakthroughs and research dealing with environmental issues; Focus on community programs that have helped improve the quality of the environment over the past year. The outreach initiative will include: A Citizen Science Project with strong emphasis on family participation; Neighborhood workshops and coalitions organized by local PBS stations in association with the American Association for Advancement of Science and the World Resources Institute; An interactive web component including real-time environmental satellite data and visualizations; Local and national media events featuring the yearly release of a "State of the Environment" report; Partnerships will be developed with environmental organizations to help promote and implement the initiative's informal education activities. The project will be under the direction of Marilyn and Hal Weiner with the television programs being produced by their company, Screenscope. Anthony Janetos, Vice President and Chief of Programs at the World Resources Institute will have oversight responsibility for the science information presented in the Annual Report. Project advisors include: Bonnie Cohen, former Under Secretary of State for Management and Board member of CARE; Chet Cooper, former Deputy Director, Emerging Technologies, Battelle/Pacific Northwest National Laboratory; Robert Fri, Senior Fellow Emeritus at Resources for the Future and former Director of the National Museum of Natural History; Edward Frieman, Director Emeritus at of the Scripps Institution of Oceanography and Vice Chancellor of the University of California; Nay Htun, Dean of the University of Peace and former Assistant Secretary-General, United Nations Development Programme; Thomas Lovejoy, Science Advisor to the World Bank and the UN Foundation; Jessica Tuchman Mathews, President of the Carnegie Endowment for International Peace; Per Pinstrup-Andersen, Director-General, International Food Policy Research Institute; Maurice Strong, Chairman, Earth council and former Secretary-General of the United Nations Earth Summit in Rio de Janeiro. There also will be science advisors for each of the individual episodes.
DATE: -
TEAM MEMBERS: Marilyn Weiner Hal Weiner Barbara Flagg
resource project Public Programs
Water Logging is a volunteer water quality monitoring program, that monitors water quality in the Huntington-Northport Bay Complex in Long Island, NY. The goals and objectives of the Water Logging Program are to: 1. Educate and involve the public in water quality assessment and protection. 2. Develop a sense of stewardship among the community in the Huntington-Northport Bay watershed. 3. Screen for water quality impairments and determine long-term water quality trends. 4. Document effects of water quality improvement programs. 5. Provide useful water quality data to interested parties and the public.
DATE: -
TEAM MEMBERS: Cornell Cooperative Extension of Suffolk County
resource project Public Programs
The California Academy of Sciences will produce "Water is Life," a 30,383 square-foot permanent exhibit with educational programming. The exhibit is designed to engage the public with the living world of water, to foster environmental stewardship and increase science literacy. Three habitat components -- Philippine Coral Reef, California Coast and Global Rainforests -- are conceptually and experientially linked through "Water Planet," which explores water's physical properties and how they impact living organisms and lead to aquatic diversity. Each component also reinforces the importance of conserving aquatic resources. Educational programming takes "Water is Life" to local schools and community events and onto the World Wide Web, as well as provides venues for formative evaluation of exhibit design elements. The development of lending kits, plus supporting manuals and workshops, will extend the reach of "Water is Life" regionally and nationally. Similarly, instruction manuals and workshops for creating desktop, living reefs will have national impact. The compelling draw of live organisms, hands-on activities, and exhibit enrichment through educational programming provide accessibility to a large, diverse audience. The exhibit will reach over one million annual visitors, and a larger audience will experience distributed educational programs.
DATE: -
TEAM MEMBERS: Margaret Burke Linda Kulik Christopher Andrews Terrence Gosliner Robert Jenkins
resource project Media and Technology
Seeing in the Dark will be a prime-time PBS special about stargazing -- described in the proposal as "the interaction between starlight and human beings who have a look for the love of it, whether just learning the constellations or doing amateur astronomy so advanced that it sometimes rivals professional research." The project teaches "hands-on" astronomy drawing heavily on new technology (large, inexpensive "Dobsonian" telescopes; charged-coupled light-sensing devices [CCDs}; and the Internet) that make astronomical observing practical for millions to whom it has previously been at best a remote possibility. The video will be supported by an extensive outreach effort that includes informal, family projects and formal, in-class exercises. The Astronomical Society of the Pacific will be a major outreach partner. There also is a companion book, "Seeing in the Dark," published by Simon & Schuster.
DATE: -
TEAM MEMBERS: Timothy Ferris Mark Andrews