Skip to main content

Community Repository Search Results

resource project Public Programs
The RASOR project is designed to increase engagement of students from rural Alaska communities in biomedical/STEM careers. Rural Alaskan communities are home to students of intersecting identities underrepresented in biomedical science, including Alaska Native, low-income, first generation college, and rural. Geographic isolation defines these communities and can limit the exposure of students to scientifically-minded peers, professional role models, and science career pathways. However these students also have a particularly strong environmental connection through subsistence and recreational activities, which makes the one-health approach to bio-medicine an intuitive and effective route for introducing scientific research and STEM content. In RASOR, we will implement place-based mentored research projects with students in rural Alaskan communities at the high school level, when most students are beginning to seriously consider career paths. The biomedical one-health approach will build connections between student experiences of village life in rural Alaska and biomedical research. Engaging undergraduate students in research has proved one of the most successful means of increasing the persistence of minority students in science (Kuh 2008). Furthermore, RASOR will integrate high school students into community-based participatory research (Israel et al. 2005). This approach is designed to demonstrate the practicality of scientific research, that science has the ability to support community and cultural priorities and to provide career pathways for individual community members. The one-health approach will provide continuity with BLaST, an NIH-funded BUILD program that provides undergraduate biomedical students with guidance and support. RASOR will work closely with BLaST, implementing among younger (pre-BLaST) students approaches that have been successful for retaining rural Alaska students along STEM pathways and tracking of post-RASOR students. Alaska Native and rural Alaska students are a unique and diverse population underrepresented in biomedical science and STEM fields.
DATE: -
TEAM MEMBERS: Janice Straley Ellen Chenowith
resource project Public Programs
Exploratorium’s The Phenomenal Genome: Evolving Public Understanding of Genetics in the Post-Mendelian Era project addresses the increasing need to develop genomic literacy in the public at large. The explosion of genomics research over the past two decades has led to an increasingly complex picture of the determinants of human health and human phenotypes, and the applications of this research are now making their way into the clinic, the media, and the hands of consumers. The goal of this project is to create a model for increasing genomic literacy through Informal Science Education programming (ISE), creating a pathway for better decision making for the health of individuals and society at large. The Phenomenal Genome focuses on general science museum visitors and teachers of middle and high school students.

The core of the Exploratorium’s approach to science education is the creation of intriguing, provocative and investigable phenomena that are experienced directly and personally through exhibits, facilitated explorations, programs, and teacher professional development. Over two years, we will develop, test, and iterate inquiry-based professional development to help teachers develop understanding and integrate the principles of contemporary genomics and genetics into their classrooms. 120 middle and high school teachers will be served during this period, and many more beyond that, as the activities and workshops developed become a regular part of our teacher professional development programming. A learning scientist specializing in teacher learning will conduct research to determine which approaches and experiences are most effective for this context, and why.

In a parallel process, we will develop and test exhibits and experiences on the museum floor for museum visitors, using a similar iterative process of prototype testing with an embedded learning scientist to study visitor learning. We plan to define the approaches that work across audiences and contexts, as well as those that work best in particular contexts.

Through this work, we will develop new resources for teaching and learning contemporary genomics and genetics, and identify promising practices in communicating contemporary genomics and genetics in informal spaces across audiences. We will disseminate our findings via conferences, peer-reviewed articles, and workshops for the ISE community.
DATE: -
TEAM MEMBERS: Hilleary Osheroff Kristina Yu
resource project Exhibitions
Escape rooms are an engaging and increasingly popular game format in which a team of players is “locked” in a room and challenged to solve a series of narrative-embedded puzzles encoded in the room’s artifacts in order to “escape” within a set period of time. The University of California Museum of Paleontology, with partners University of Kansas Natural History Museum and the California Academy of Sciences, aim to develop, evaluate, and disseminate a “serious game” (i.e., a game designed for a purpose other than entertainment) based on the escape room model. Our traveling/loanable pop-up escape room and associated extension activities will engage diverse families (ages 8 and up) in museums and libraries in solving a biomedical mystery that teaches fundamental concepts in biology, engages critical-thinking and collaboration skills, and stimulates interest in biomedical careers. STEM Escape will address NGSS-aligned content central to medical research – in particular, it will communicate basic concepts regarding evolutionary relationships, a topic with relevance to a wide variety of medical applications, such as determining the source of emerging infectious diseases, tracking the progression of disease within a host, and identifying new medicines. The project is designed to lay the groundwork for extended family interactions surrounding scientific content and biomedical careers. The immersive game will be supplemented by a set of solo and docent-led follow-up activities that reinforce key concepts and emphasize connections between players’ experience in the game and biomedical research careers. Learners will also receive takeaway media (e.g., activity book) that highlights a diverse set of NIH-funded researchers whose work directly relies on evolutionary patterns/processes. Caregivers will have the option of receiving a follow-up email with free at-home activities. The themed inflatable pop-up room will be wheelchair-accessible and all materials will be bilingual in English and Spanish. The STEM Escape experience will be developed with and for the diverse audiences visiting urban/suburban natural history museums and libraries, as well as with and for rural families, whom we will reach through rural libraries. The project will also produce and evaluate a suite of support materials to facilitate institutional adoption and deployment of the experience. Nine host sites across the country have committed to hosting the room (with an additional two sites in the planning stages), and after the life of the grant, the room will continue to make an impact as a rentable traveling exhibit. Long term, this project will improve the public’s understanding of medically relevant evolutionary content, increase interest in biomedical careers, particularly among underserved groups targeted, and improve our understanding of how immersive games can be used to serve educational objectives.
DATE: -
TEAM MEMBERS: Lisa White
resource project Public Programs
For nearly 20 years, the UAB Center for Community OutReach Development (CORD) has conducted SEPA funded research that has greatly enhanced the number of minority students entering the pipeline to college and biomedical careers, e.g., nearly all of CORD’s Summer Research Interns since 1998 (>300) have completed/are completing college and most of them are continuing on to graduate biomedical research and/or clinical training and careers. CORD’s programs that focused on high and middle school students have drawn many minority students into biomedical careers, but a low percentage of minority students benefit from these programs because far too many are already left behind academically in grades 4-6, due, at least in part, to a significant drop in science grades between grades 4 and 6, a drop from which most students never recover. A major contributor to this effect is that most grade 4-6 teachers in predominantly minority schools lack significant formal training in science and often are not fully aware of the great opportunities offered by biomedical careers.

In SEEC II, CORD will deliver intensive inquiry-based science training to grade 4-6 teachers, providing them with science content and hands-on science experiences that will afford their student both content and skills that will make them excited about, and competitive for, the advanced courses needed to move into biomedical research careers. SEEC II will also link teachers together across the elementary/middle school divide and bring the teachers together with administrators and parents, who will experience firsthand the excitement that inquiry learning brings and the significant advancement it provides in science and in reading and math. At monthly meetings and large annual celebrations, the parents, teachers and administrators will learn about the opportunities that biomedical careers can provide for the student who is well prepared. They will also consider the financial and educational steps required to ensure that students have the ability to reach these professions.

SEEC II will also expand CORD’s middle school LabWorks and Summer Science Camps to include grade 4-5 students and provide the teachers with professional learning in informal settings. During summer training, in small groups, the teachers will expand one of the inquiry-based science activities that they complete in the training, and they will use these in their classrooms and communicate with the others in their group to perfect these experiences in the school year. Finally, the teachers and grade 4-5 students will develop science and engineering fair-type research projects with which they will compete both on the school level and at the annual meeting. Thus, the students will share with their parents the excitement that science brings. The Intellectual Merit of SEEC II will be to test a model to enhance grade 4-6 teacher development and vertical alignment, providing science content, exposure to biomedical scientists and training in participatory science experiments, thus positioning teachers to succeed. The Broader Impacts will include the translation and testing of a science education model to assist minority students to avoid the middle school plunge and reach biomedical careers.
DATE: -
TEAM MEMBERS: J. Michael Weiss
resource project Public Programs
The concept of One Health emphasizes the connection between human health, the health of animals and the health of the environment – with the goal of improving all health. The One Health approach supports collaborations between physicians, veterinarians, dentists, nurses, ecologists, and other science, health and environmentally-related disciplines. The One Health approach is increasingly important as our population rises, agriculture intensifies, and habitat destruction increases.

The goal of our “One Health” project is to increase adolescents’ understanding of One Health concepts and the importance of One Health collaborations. We will accomplish this by developing and disseminating: (1) Classroom lessons for high school students that are case-based, incorporate hands-on activities, and align with the Next Generation Science Standards, and; (2) Activities for middle and high school students that are suitable for use in a variety of informal (non-school) education settings. During this five-year project we will:
• Collaborate with scientists and life science teachers to develop case-based, hands-on One Health lessons for high school students.
• Develop and use a reliable and valid pre/post assessment to determine the impact of the One Health lessons on student learning.
• Implement a dissemination plan in which we will recruit, train and support a national network of “teacher-presenters” to lead professional development workshops for their peers throughout the US.
• Develop activities that will be used for middle school and high school One Health field trip programs at the University of Rochester’s Life Sciences Learning Center.
• Collaborate with informal educators to create One Health activities to be used in their outreach programs.

This project is significant because it will improve students’ understanding of the One Health approach to promoting the health of people, animals, and the environment. This project will also significantly impact teachers’ awareness of One Health, and how One Health concepts are aligned with NGSS and can be incorporated into their existing curriculums. This project is innovative because it will develop One Health lessons and activities for use in a variety of settings, through partnerships with scientists, science teachers, and informal science educators. This project will also feature an innovative model for disseminating the One Health lessons to teachers nationwide using peer-to-peer professional development.
DATE: -
TEAM MEMBERS: Dina Markowitz
resource project Public Programs
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.
DATE: -
TEAM MEMBERS: Roger Sloboda