Skip to main content

Community Repository Search Results

resource project Media and Technology
Hero Elementary is a transmedia educational initiative aimed at improving the school readiness and academic achievement in science and literacy of children grades K-2. With an emphasis on Latinx communities, English Language Learners, youth with disabilities, and children from low-income households, Hero Elementary celebrates kids and encourages them to make a difference in their own backyards and beyond by actively doing science and using their Superpowers of Science. The project embeds the expectations of K–2nd NGSS and CCSS-ELA standards into a series of activities, including interactive games, educational apps, non-fiction e-books, hands-on activities, and a digital science notebook. The activities are organized into playlists for educators and students to use in afterschool programs. Each playlist centers on a meaningful conceptual theme in K-2 science learning.
DATE: -
TEAM MEMBERS: Joan Freese Momoko Hayakawa Bryce Becker
resource evaluation Media and Technology
In spring 2019, WestEd conducted a pilot study using five playlists to understand the feasibility of implementing the playlists in afterschool programs and to discuss the potential impact of the playlists on student science learning. The research questions were: 1) How are the playlists implemented in after-school programs? 2) What is the potential impact of playlists on student science knowledge and skills? Student science knowledge was measured using the ScienceQuest test, and attitudes towards science were measured by the Emerging STEM Learning Activation Survey. Data were analyzed using a
DATE:
TEAM MEMBERS: Linlin Li Ben Mahrer Gary Weiser Ari Orenstein Eunice Chow Sara Atienza Joan Freese Momoko Hayakawa
resource project Media and Technology
Purpose: This project team will fully develop and test SuperChemVR, a virtual environment integrated within a Virtual Reality (VR) headset for an immersive exploration of a chemistry lab. While chemistry labs offer the benefits of hands-on experimentation to help students learn abstract concepts, they are costly to maintain, supervise, and pose safety risks. Virtual chemistry labs for computers and tablets allow students to explore chemistry safely with unlimited resources, and provide immediate feedback and automated assessments, but these "point-and click" experiences are not immersive or hands-on. Immersive VR allows users to fully experience an interactive, 3-Dimensional 360-degree environment.

Project Activities: During Phase I, (completed in 2016), the team developed a prototype of SuperChemVR, including a virtual chemistry lab environment within which students immerse themselves while wearing a VR headset. At the end of Phase I, researchers completed a pilot study with 54 students and three teachers. Results demonstrated that the hardware and software prototype operated as intended, teachers were able to integrate it within the classroom environment, and students were engaged while using the prototype. In Phase II, the team will add content modules and a gameplay narrative to the platform, build the automated feedback mechanism, strengthen the back-end management system, and build out the teacher reporting dashboard. After development is complete, the research team will conduct a larger pilot study to assess the feasibility and usability, fidelity of implementation, and the promise of the SuperChemVR for improving student learning in chemistry. The study will include 10 high school chemistry classrooms, half randomly assigned to use SuperChemVR and half to follow business-as-usual procedures. Researchers will compare pre-and-post scores of student's chemistry learning.

Product: SuperChemVR is a room-scale VR lab and learning game for high school chemistry students. While wearing a VR headset, students will be immersed in a simulated chemistry 3D-environment where they will be challenged to acquire basic lab and safety skills. Through actual, accurate measurement and experimentation, students will improve their understanding of chemistry practices as they learn using science to solve problems. VR will enhance students' chemistry experience by providing instant cleanup, access to infinite resources, and observations at exponentially larger and smaller scales while simulating accurate physical actions in a safe environment. In the game component of the intervention, students will participate in an outer-space adventure that takes place on a derelict spaceship requiring players to use chemistry to survive until they can be rescued. SuperChem VR will be used in the classroom by teachers as a demonstration tool, will provide implementation supports, and will provide teachers with reports on student performance.
DATE: -
TEAM MEMBERS: Jesse Schell
resource project Media and Technology
Purpose: This project team will fully develop and test an open online platform that posts student-led engineering project challenges for Kindergarten to grade 12 classrooms. Research demonstrates that improved attitudes towards engineering in elementary and middle school are imperative to increase the pursuit of STEM degrees and careers. This project intends to address a shortage of tools and curricula in K-12 engineering today, in order to meet the learning objectives new the Next Generation Science Standards and to engage students in STEM.

Project Activities: During Phase I, (completed in 2016), the team developed a prototype, including a content management platform to host challenges on a broad range of STEM topics, such as computer coding, digital modeling, or producing simulations. At the end of Phase I, researchers completed a pilot study with 100 students and two teachers. Results demonstrated that the prototype operated as intended, that students were highly engaged with challenges on the platform, and that teachers were able to incorporate challenges within instructional practice. In Phase II, the team will refine the landing page, further develop the system architecture to accommodate a larger number of challenges, and upgrade the teacher portal to build capacity for the effective integration into instructional practice. After development is complete, the research team will conduct a pilot study to assess the feasibility and usability, fidelity of implementation, and promise of the platform to improve learning. The study will include 40 high school classrooms with a minimum of 25 students per class. Half of the classrooms will be randomly assigned to use the platform to conduct a challenge and half to follow business-as-usual procedures. Researchers will compare pre-and-post scores of students' science and engineering self-assessments, which measure ability to engage in science and engineering practices such as asking questions, modeling, planning and carrying out investigations, analyzing data, and constructing explanations, as well as content-specific measures depending on the specific challenge with which classes engage.

Product: The project team will develop a platform that will facilitate design challenges in K-12 classrooms across STEM academic topics and career paths within the field of engineering. The platform will enable classes to post their projects to the site and for other classes around the country to participate in the project. Each challenge (and the associated education resources curated for that challenge) will be publicly displayed on the Future Engineers platform and offered free for student participation and classroom facilitation. The content management system will be developed to enable the platform to host a high volume of challenges simultaneously and will allow for a diverse array of student-generated submissions. The platform will also include teacher resources to support the alignment of game play with learning goals and to support implementation.
DATE: -
TEAM MEMBERS: Deanna Belle
resource project Media and Technology
Purpose: This project team will fully develop and test Cyberchase Fractions Quest, a web-based mathematics game for students in grade 3 and 4. Research shows that inadequate understanding of fractions can persist from early grades through higher education, and that success in fractions predicts future success in mathematics and other STEM subjects.

Project Activities: During Phase I (completed in 2016), the team developed a prototype of Cyberchase Fractions Quest, including an interactive number line game with four levels of challenges, and a tool to scaffold learning through hints and provide encouragement as students progress. At the end of Phase I, the research team conducted a pilot study over one week with 60 grade 4 students, half of whom were randomly assigned to use the prototype and half assigned to paper-based fractions activities. Results revealed that the prototype functioned as intended, that students were engaged during gameplay, and that from pre- to post-test, students using the prototype increased significantly in their knowledge of number line problems compared to the control group. In Phase II, the team will finalize the design, artwork, and animation, the formative and summative assessment component, and learning management system. After development is complete, the researchers will carry out a pilot study to assess the usability and feasibility, fidelity of implementation, and promise of the game to improve student learning of fractions over a 5-week period. The study will include four classrooms of grade 3 students, two of which will be randomly assigned, to use the games to supplement in-class lessons while the others will use paper-based activities. The researchers will compare pre-and-post scores for student learning of fractions. The study will also track teacher implementation.

Product: The final product is Cyberchase Fractions Quest—a math game based on the storyline of PBS children's television series, Cyberchase. In the game, students in grades 3 and 4 will apply learning fractions within three contexts: areas and regions (such as shapes), sets (groups of objects), and on a number line. The game will identify specific areas where students struggle and will introduce challenges to support individualized learning. Similar to other popular game apps, student will receive immediate feedback from one to three stars based on how well they perform on each challenge as well as in-game rewards as they progress toward mastery. The game will include teacher resources for classroom implementation, and an educator dashboard presenting results.
DATE: -
TEAM MEMBERS: Gary Goldberger