Skip to main content

Community Repository Search Results

resource research Media and Technology
Presentation slides provide an overview the Wise Guys and Gals project, DRL 1422436.
DATE:
TEAM MEMBERS: David Burghardt
resource project Media and Technology
Research shows that algebra is a major barrier to student success, enthusiasm and participation in STEM for under-represented students, particularly African-American students in under-resourced high schools. Programs that develop ways to help students master algebra concepts and a belief that they can perform algebra may lead to more students entering engineering careers. This project will provide an online engineering program to support 9th and 10th grade Baltimore City Public Schools students, a predominantly low-income African-American cohort, to develop concrete goals of becoming engineers. The goals of the program are to help students with a growing interest in engineering to maintain that interest throughout high school. The project will also support students aspire to an engineering career. The project will develop in students an appreciation of requisite courses and skills, and increase self-efficacy in mathematics. The project will also develop a replicable model of informal education capable of reinforcing the mathematical foundations that students learn during the school day. Additionally, the project will broaden participation in engineering by being available to students during out-of-school time and by having relaxed entrance criteria compared to existing opportunities in supplemental engineering curricula. The project is a collaboration between the Baltimore City Public Schools, Johns Hopkins University Applied Physics Laboratory, Northrop Grumman Corporation, and Expanded School-Based Mental Health programs to support students both during and after participation. The project will benefit society by providing skills that will allow high school students to become members of tomorrow's highly trained STEM workforce.

The research will test whether an informal, scaffolded online algebra-for-engineering program increases students' mastery and self-efficacy in mathematics. The research will advance knowledge regarding informal education by applying Social Cognitive Career Theory as a framework for measuring program impact. The theoretical framework will aid in identifying mechanisms through which students with interest in engineering might persist in maintaining this interest through high school via algebra skill mastery and increased self-efficacy. The project will recruit 200 youth from the Baltimore City Public Schools to participate in the project over three years. Qualitative data will be collected to assess how student and school socioeconomic factors impact implementation, student engagement, and outcomes. The research will answer the following questions: 1) What effect does program participation have on math mastery? 2) What direct and indirect effects do program completion and supports have on students' mathematics self-efficacy? 3) What direct and indirect effects do program components have on engineering career goals by the end of the program? 4) What direct and indirect effects does math self-efficacy have on career goals? 5) To what extent are the effects of program participation on engineering career goals mediated by math self-efficacy and engineering interest? 6) How do school factors relate to the implementation of the program? 7) What socioeconomic-related factors relate to the regularity and continuation of student participation in the program? The quantitative methods of data analysis will employ descriptive and multivariate statistical methods. Qualitative data from interviews will be analyzed using an emergent approach and a coding scheme guided by theoretical constructs. Project results will be communicated to scholars and practitioners. The team will also share information through school newsletters and parent communication through Baltimore City Public Schools.

This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Michael Falk Christine Newman Rachel Durham
resource project Media and Technology
This RAPID award is made by the AISL program in the Division of Research on Learning in the Directorate for Education and Human Resources, using funds from the Coronavirus Aid, Relief, and Economic Security (CARES) Act. COVID-19 presents a national threat to the health of children and families, presenting serious implications for the mental and physical health of children. This project addresses two critical aspects of the impact on COVID-19 on families: (a) the large-scale shift to at-home learning based on nationwide school closures and (b) the critical need for families to understand the basic science of virus transmission and prevention. To address these needs, the project team will develop a series of STEM activities for families with children in grades K-6 that make use of items readily available in most households. The activities help children and their families learn about viruses, virus transmission, and virus prevention while also developing other STEM-skills, particularly related to engineering design. Importantly, the project team also considers the emotional well-being of children and families during the disruption of the COVID-19 pandemic. Led by researchers from Indiana University and Binghamton University, and experts in educational resource development from Science Friday (a non-profit organization dedicated to increasing the public's access to science and scientific information through podcasts, digital videos, original web articles, and educational resources for teachers and informal educators) the project is further supported by partnerships with the New York Hall of Science, Amazeum (AR), the Gulf of Maine Research Institute (ME), The Tech Museum of Innovation (CA), the Indiana State Museum, and Kopernik Observatory Science Center (NY). The activities will be shared with families through live-streamed web sessions that introduce the activity, give tips to adults for facilitation, share a bit on related STEM careers and engage the audience in dialog about the activity and their current experiences. Versions of the sessions that are recorded will be edited and include closed-captioning and subtitles in multiple languages before being posted on platforms such as YouTube.

This project uses a design-based research approach to investigate strategies for enabling families to actively engage with STEM while home and away from their traditional institutions during a period of crisis. The research components focus on:


Engagement: How do families engage in the activity tasks, in terms of processes, practices, and use of resources? Who participated, why did they choose to participate and how did they engage (including modification of activities)? What barriers prevented interested families from completing activities?
Impact: How did the activities change participants? feelings of: a) efficacy around STEM and b) connectedness/ isolation, during extended school closures?
The Activities: Which activities had the greatest uptake? How many activity ideas were submitted by those outside of the team? What was the age/content focus of each of these activities?


The researchers will analyze social media data (including data on resource downloads and use of tracked links, YouTube and Facebook views, comment threads during livestreams and Likes/Shares/Follows across social media sites) to refine and improve the activities and programming as well as learn about the ways families are engaging in the activities. The researchers will solicit survey responses from website visitors to gather more information on participants, why they participated, how they engaged and how the activities impacted participants? efficacy around STEM and their feelings of connectedness or isolation. The researchers will also ask participants to submit images, videos and text that describes what they are making and their process along the way. Analysis of this data would lead to insights on how children and families use STEM language and practices; how children and families ask questions and use COVID-19-related and other information as part of their design work; and how ideas are formed, shaped and refined as families engage in design and making. While the project focuses on a unique opportunity to collect data on family STEM engagement as families respond to disruptions from the COVID-19 pandemic, this project and its findings will provide a knowledge base that can be utilized to inform future responses to national emergencies, other work aimed at promoting family learning at home, and approaches to supporting children in open-ended problem solving.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Media and Technology
This four-year research study will investigate families' joint media engagement (JME) and informal STEM learning while listening to the child-focused STEM podcast, Brains On! Prior research has shown that the setting where families most often listen to this podcast together is the family automobile as children are being driven to school, on road trips, or other activities. Brains On! is rooted in the mission-driven principle of public radio to educate and inspire. The target audience is children 5-12 years old and their parents or caregivers. Each episode ranges from 20-45 minutes in length and presents ideas from a variety of STEM disciplines such as physics, chemistry, biology and engineering featuring sound-rich explanations of concepts through fun skits, original songs and interviews with scientists. The episodes use a light-hearted, humorous approach to share oftentimes complex STEM information. To provide an interactive experience, hosts encourage the audience to participate with the show by sending in drawings, emailing photos of plants and animals, or posing questions to be answered in future episodes. Every episode is co-hosted by a different child who interviews top scientists about their work. The scientists are selected to be representative of the range of topics presented and are meant to serve as role models for the listeners and demonstrating a wide range of career options in the STEM field.

The research adds to the social learning theory of joint media engagement (JME) which has shown that interactions between people sharing a media experience can result in learning together. Recent work on Joint Media Engagement has focused on parent/child interactions with television/video in the home. But little is known about how families engage with children's STEM podcasts together and what learning interactions occur as a result. Even less is known about this engagement within an automobile setting. This research project will build new knowledge filling a gap in the informal STEM learning field. It will use a mixed-methods research design with three phases of research to answer these questions: 1) How does the Brains On! podcast mediate STEM-based joint media engagement and family learning in an automobile setting? 2) What does STEM based joint media engagement and family learning look and sound like in this setting? 3) How do "in-automobile" factors foster or impede STEM-based joint media engagement and family learning? Phase 1 is a listener experience video study of 30 families listening to the Brains On! episodes. Phase 2 is video-based case studies of the natural automobile-based listening behaviors of eight Phase 1 families. Phase 3 is an online survey of Brains On! listeners to understand how representative the findings from Phases 1 and 2 are to the larger Brains On! Research. Results will be shared widely with key audiences that can use the findings (media developers, ISE practitioners, ISE evaluators and researchers, and families). It will also make an important contribution to the Joint Media Engagement literature and the ISE field.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Amy Grack Nelson Molly Bloom
resource project Media and Technology
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Design Squad Maker project, a collaboration of WGBH Public Television (WGBH) and the New York Hall of Science (NySci), will research and develop engineering design projects that provide evidence for how to integrate informal learning spaces with digital public media assets. The project will be designed to provide accessible, motivating pathways for children aged 8-11 in pursuing and completing ambitious, fully realized engineering design projects. The project will build on WGBH's existing Design Squad model for using media to engage kids in informal engineering activities and NySCI's expertise in facilitating children's unique design processes in museum settings. By developing and studying new strategies for supporting children's use of the design process, Design Squad Maker will address critical issues in engineering education and informal learning that remain relatively unexplored. Project research will contribute to the emerging literature on "connected learning" by building new knowledge about how children's design activities can be sustained and supported over time and across multiple contexts, such as science museums and homes. Drawing on existing research in the learning sciences and engineering education, the project seeks to advance knowledge about the role of museums, maker spaces, and digital technology in sustaining children's learning in engineering. The project will use a design-based research approach, a research and development process whereby educational designers collaborate with learning scientists. Museum practitioners will collaborate with research staff and media developers to design, test, and improve digital resources, facilitation strategies, and parent engagement strategies to support children through an entire design process. The research and development process will result in digital resources and approaches in a flexible toolkit, which will be used when assessing the project's scale-up potential at 10 museum/maker spaces. The project will conduct a summative evaluation, assessing the project's intended impacts with children, parents, and staff at museums/maker spaces across the country. The toolkit will be nationally disseminated through national partners that include the Association of Science-Technology Centers, Maker Education, the National Association for Family, School, and Community Engagement, and engineering education organizations. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Mary Haggerty Marisa Wolsky Sonja Latimore David Wells Susan Letourneau
resource project Media and Technology
This Research in Service to Practice project, a collaboration of Pepperdine University and the New York Hall of Science, will establish a network of STEM-related Media Making Clubs comprised of after-school students aged 12 - 19 and teachers in the U.S. and in three other countries: Kenya, Namibia and Finland. The media produced by the students may include a range of formats such as videos, short subject films, games, computer programs and specialized applications like interactive books. The content of the media produced by the students will focus on the illustration and teaching of STEM topics, where the shared media is intended to help other students become enthused about and learn the science. This proposal builds on the principal investigator's previous work on localized media clubs by now creating an international network in which after-school students and teachers will collaborate at a distance with other clubs. The central research questions for the project pertain to three themes at the intersection of learning, culture and collaboration: the impact of participatory teaching, virtual networks, and intercultural, global competence. The research will combine qualitative, cross-cultural and big data methods. Critical to the innovation of the project, the research team will also develop a network assessment tool, adapting epistemic network analysis methods to the needs of this initiative. This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Eric Hamilton Katherine McMillan Priya Mohabir